These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19135551)

  • 41. Using NLP to identify cancer cases in imaging reports drawn from radiology information systems.
    Patrick J; Asgari P; Li M; Nguyen D
    Stud Health Technol Inform; 2013; 188():91-4. PubMed ID: 23823294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated extraction of Biomarker information from pathology reports.
    Lee J; Song HJ; Yoon E; Park SB; Park SH; Seo JW; Park P; Choi J
    BMC Med Inform Decis Mak; 2018 May; 18(1):29. PubMed ID: 29783980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facilitating research in pathology using natural language processing.
    Xu H; Friedman C
    AMIA Annu Symp Proc; 2003; 2003():1057. PubMed ID: 14728560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated classification of cancer morphology from Italian pathology reports using Natural Language Processing techniques: A rule-based approach.
    Hammami L; Paglialonga A; Pruneri G; Torresani M; Sant M; Bono C; Caiani EG; Baili P
    J Biomed Inform; 2021 Apr; 116():103712. PubMed ID: 33609761
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transformation of Pathology Reports Into the Common Data Model With Oncology Module: Use Case for Colon Cancer.
    Ryu B; Yoon E; Kim S; Lee S; Baek H; Yi S; Na HY; Kim JW; Baek RM; Hwang H; Yoo S
    J Med Internet Res; 2020 Dec; 22(12):e18526. PubMed ID: 33295294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic extraction of cancer characteristics from free-text pathology reports for cancer notifications.
    Nguyen A; Moore J; Lawley M; Hansen D; Colquist S
    Stud Health Technol Inform; 2011; 168():117-24. PubMed ID: 21893919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated classification of free-text pathology reports for registration of incident cases of cancer.
    Jouhet V; Defossez G; Burgun A; le Beux P; Levillain P; Ingrand P; Claveau V
    Methods Inf Med; 2012; 51(3):242-51. PubMed ID: 21792466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards identifying intervention arms in randomized controlled trials: extracting coordinating constructions.
    Chung GY
    J Biomed Inform; 2009 Oct; 42(5):790-800. PubMed ID: 19166975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A system for the extraction and representation of summary of product characteristics content.
    Rubrichi S; Quaglini S; Spengler A; Russo P; Gallinari P
    Artif Intell Med; 2013 Feb; 57(2):145-54. PubMed ID: 23085139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project.
    Jackson RG; Patel R; Jayatilleke N; Kolliakou A; Ball M; Gorrell G; Roberts A; Dobson RJ; Stewart R
    BMJ Open; 2017 Jan; 7(1):e012012. PubMed ID: 28096249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Information extraction from Italian medical reports: An ontology-driven approach.
    Viani N; Larizza C; Tibollo V; Napolitano C; Priori SG; Bellazzi R; Sacchi L
    Int J Med Inform; 2018 Mar; 111():140-148. PubMed ID: 29425625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pattern-based information extraction from pathology reports for cancer registration.
    Napolitano G; Fox C; Middleton R; Connolly D
    Cancer Causes Control; 2010 Nov; 21(11):1887-94. PubMed ID: 20652738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological Sensor Data.
    Banaee H; Loutfi A
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1557-66. PubMed ID: 26340684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural Language Processing Approaches to Detect the Timeline of Metastatic Recurrence of Breast Cancer.
    Banerjee I; Bozkurt S; Caswell-Jin JL; Kurian AW; Rubin DL
    JCO Clin Cancer Inform; 2019 Oct; 3():1-12. PubMed ID: 31584836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated Classification of Pathology Reports.
    Oleynik M; Finger M; Patrão DF
    Stud Health Technol Inform; 2015; 216():1040. PubMed ID: 26262339
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Patient representation learning and interpretable evaluation using clinical notes.
    Sushil M; Šuster S; Luyckx K; Daelemans W
    J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Current issues in biomedical text mining and natural language processing.
    Chapman WW; Cohen KB
    J Biomed Inform; 2009 Oct; 42(5):757-9. PubMed ID: 19735740
    [No Abstract]   [Full Text] [Related]  

  • 58. A Web Application for Adrenal Incidentaloma Identification, Tracking, and Management Using Machine Learning.
    Bala W; Steinkamp J; Feeney T; Gupta A; Sharma A; Kantrowitz J; Cordella N; Moses J; Drake FT
    Appl Clin Inform; 2020 Aug; 11(4):606-616. PubMed ID: 32937677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Do Neural Information Extraction Algorithms Generalize Across Institutions?
    Santus E; Li C; Yala A; Peck D; Soomro R; Faridi N; Mamshad I; Tang R; Lanahan CR; Barzilay R; Hughes K
    JCO Clin Cancer Inform; 2019 Jul; 3():1-8. PubMed ID: 31310566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conceptual recurrence plots: revealing patterns in human discourse.
    Angus D; Smith A; Wiles J
    IEEE Trans Vis Comput Graph; 2012 Jun; 18(6):988-97. PubMed ID: 22499664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.