These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 19136461)
1. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Lolli G Nucleic Acids Res; 2009 Mar; 37(4):1260-8. PubMed ID: 19136461 [TBL] [Abstract][Full Text] [Related]
3. Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. Pinhero R; Liaw P; Bertens K; Yankulov K Eur J Biochem; 2004 Mar; 271(5):1004-14. PubMed ID: 15009212 [TBL] [Abstract][Full Text] [Related]
4. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
5. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Cowling VH; Cole MD Mol Cell Biol; 2007 Mar; 27(6):2059-73. PubMed ID: 17242204 [TBL] [Abstract][Full Text] [Related]
6. Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. Tamrakar S; Kapasi AJ; Spector DH J Virol; 2005 Dec; 79(24):15477-93. PubMed ID: 16306619 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Napolitano G; Majello B; Licciardo P; Giordano A; Lania L Gene; 2000 Aug; 254(1-2):139-45. PubMed ID: 10974544 [TBL] [Abstract][Full Text] [Related]
8. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Glover-Cutter K; Larochelle S; Erickson B; Zhang C; Shokat K; Fisher RP; Bentley DL Mol Cell Biol; 2009 Oct; 29(20):5455-64. PubMed ID: 19667075 [TBL] [Abstract][Full Text] [Related]
9. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. St Amour CV; Sansó M; Bösken CA; Lee KM; Larochelle S; Zhang C; Shokat KM; Geyer M; Fisher RP Mol Cell Biol; 2012 Jul; 32(13):2372-83. PubMed ID: 22508988 [TBL] [Abstract][Full Text] [Related]
10. RNA polymerase II C-terminal heptarepeat domain Ser-7 phosphorylation is established in a mediator-dependent fashion. Boeing S; Rigault C; Heidemann M; Eick D; Meisterernst M J Biol Chem; 2010 Jan; 285(1):188-96. PubMed ID: 19901026 [TBL] [Abstract][Full Text] [Related]
11. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. Caracciolo V; Laurenti G; Romano G; Carnevale V; Cimini AM; Crozier-Fitzgerald C; Gentile Warschauer E; Russo G; Giordano A Cell Cycle; 2012 Mar; 11(6):1202-16. PubMed ID: 22391209 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. Guo Z; Stiller JW BMC Genomics; 2004 Sep; 5():69. PubMed ID: 15380029 [TBL] [Abstract][Full Text] [Related]
13. HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. Deng L; Ammosova T; Pumfery A; Kashanchi F; Nekhai S J Biol Chem; 2002 Sep; 277(37):33922-9. PubMed ID: 12114499 [TBL] [Abstract][Full Text] [Related]
15. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Bowman EA; Kelly WG Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308 [TBL] [Abstract][Full Text] [Related]
16. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
17. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. Pei Y; Schwer B; Shuman S J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973 [TBL] [Abstract][Full Text] [Related]
18. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. Ramani MKV; Escobar EE; Irani S; Mayfield JE; Moreno RY; Butalewicz JP; Cotham VC; Wu H; Tadros M; Brodbelt JS; Zhang YJ ACS Chem Biol; 2020 Aug; 15(8):2259-2272. PubMed ID: 32568517 [TBL] [Abstract][Full Text] [Related]
19. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of RNA polymerase II in cardiac hypertrophy: cell enlargement signals converge on cyclin T/Cdk9. Kulkarni PA; Sano M; Schneider MD Recent Prog Horm Res; 2004; 59():125-39. PubMed ID: 14749500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]