BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 19136552)

  • 1. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SLiMDisc server: short, linear motif discovery in proteins.
    Davey NE; Edwards RJ; Shields DC
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
    Hugo W; Ng SK; Sung WK
    J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of stable and significant binding motif pairs from PDB complexes and protein interaction datasets.
    Li H; Li J
    Bioinformatics; 2005 Feb; 21(3):314-24. PubMed ID: 15374856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent.
    Davey NE; Shields DC; Edwards RJ
    Nucleic Acids Res; 2006; 34(12):3546-54. PubMed ID: 16855291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins.
    Edwards RJ; Davey NE; Shields DC
    PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved network motifs allow protein-protein interaction prediction.
    Albert I; Albert R
    Bioinformatics; 2004 Dec; 20(18):3346-52. PubMed ID: 15247093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules.
    Fober T; Mernberger M; Klebe G; Hüllermeier E
    Bioinformatics; 2009 Aug; 25(16):2110-7. PubMed ID: 19286830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate nsSNPs that can affect the functions and interactions of cell cycle proteins.
    Savas S; Ahmad MF; Shariff M; Kim DY; Ozcelik H
    Proteins; 2005 Feb; 58(3):697-705. PubMed ID: 15617026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains.
    Ren S; Yang G; He Y; Wang Y; Li Y; Chen Z
    BMC Genomics; 2008 Oct; 9():452. PubMed ID: 18828911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering interacting domains and motifs in protein-protein interactions.
    Hugo W; Sung WK; Ng SK
    Methods Mol Biol; 2013; 939():9-20. PubMed ID: 23192537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting functionally important residues from sequence conservation.
    Capra JA; Singh M
    Bioinformatics; 2007 Aug; 23(15):1875-82. PubMed ID: 17519246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.
    Li H; Li J; Wong L
    Bioinformatics; 2006 Apr; 22(8):989-96. PubMed ID: 16446278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein-protein interaction specificity through the integration of three-dimensional structural information and the evolutionary record of protein domains.
    Panjkovich A; Aloy P
    Mol Biosyst; 2010 Apr; 6(4):741-9. PubMed ID: 20237652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of short linear motifs from protein sequences.
    Edwards RJ; Palopoli N
    Methods Mol Biol; 2015; 1268():89-141. PubMed ID: 25555723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information.
    Bartoli L; Fariselli P; Krogh A; Casadio R
    Bioinformatics; 2009 Nov; 25(21):2757-63. PubMed ID: 19744995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The global trace graph, a novel paradigm for searching protein sequence databases.
    Heger A; Mallick S; Wilton C; Holm L
    Bioinformatics; 2007 Sep; 23(18):2361-7. PubMed ID: 17823134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DIVAA: analysis of amino acid diversity in multiple aligned protein sequences.
    Rodi DJ; Mandava S; Makowski L
    Bioinformatics; 2004 Dec; 20(18):3481-9. PubMed ID: 15284106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.