These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19136622)

  • 1. Systemic regulation of starvation response in Caenorhabditis elegans.
    Kang C; Avery L
    Genes Dev; 2009 Jan; 23(1):12-7. PubMed ID: 19136622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic regulation of autophagy in Caenorhabditis elegans.
    Kang C; Avery L
    Autophagy; 2009 May; 5(4):565-6. PubMed ID: 19270490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MGL-1 on AIY neurons translates starvation to reproductive plasticity via neuropeptide signaling in Caenorhabditis elegans.
    Jeong H; Paik YK
    Dev Biol; 2017 Oct; 430(1):80-89. PubMed ID: 28807780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in
    Kang C; Avery L
    Mol Cells; 2021 Jul; 44(7):529-537. PubMed ID: 34140426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation.
    Kang C; You YJ; Avery L
    Genes Dev; 2007 Sep; 21(17):2161-71. PubMed ID: 17785524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonselective autophagy reduces mitochondrial content during starvation in Caenorhabditis elegans.
    Hibshman JD; Leuthner TC; Shoben C; Mello DF; Sherwood DR; Meyer JN; Baugh LR
    Am J Physiol Cell Physiol; 2018 Dec; 315(6):C781-C792. PubMed ID: 30133321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast two-hybrid screening identifies MPZ-1 and PTP-1 as candidate scaffolding proteins of metabotropic glutamate receptors in Caenorhabditis elegans.
    Dillon J; Holden-Dye L; O'Connor V
    Invert Neurosci; 2018 Nov; 18(4):16. PubMed ID: 30417267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant response is a protective mechanism against nutrient deprivation in C. elegans.
    Tao J; Wu QY; Ma YC; Chen YL; Zou CG
    Sci Rep; 2017 Feb; 7():43547. PubMed ID: 28230214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabotropic Glutamate Receptors: MODULATORS OF CONTEXT-DEPENDENT FEEDING BEHAVIOUR IN C. ELEGANS.
    Dillon J; Franks CJ; Murray C; Edwards RJ; Calahorro F; Ishihara T; Katsura I; Holden-Dye L; O'Connor V
    J Biol Chem; 2015 Jun; 290(24):15052-65. PubMed ID: 25869139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan.
    Lee BH; Ashrafi K
    PLoS Genet; 2008 Oct; 4(10):e1000213. PubMed ID: 18846209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPK acts as a molecular trigger to coordinate glutamatergic signals and adaptive behaviours during acute starvation.
    Ahmadi M; Roy R
    Elife; 2016 Sep; 5():. PubMed ID: 27642785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple nutrients bypass the requirement for HLH-30 in coupling lysosomal nutrient sensing to survival.
    Murphy JT; Liu H; Ma X; Shaver A; Egan BM; Oh C; Boyko A; Mazer T; Ang S; Khopkar R; Javaheri A; Kumar S; Jiang X; Ory D; Mani K; Matkovich SJ; Kornfeld K; Diwan A
    PLoS Biol; 2019 May; 17(5):e3000245. PubMed ID: 31086360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans.
    Suo S; Kimura Y; Van Tol HH
    J Neurosci; 2006 Oct; 26(40):10082-90. PubMed ID: 17021164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping out starvation responses.
    Ashrafi K
    Cell Metab; 2006 Apr; 3(4):235-6. PubMed ID: 16581000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx.
    You YJ; Kim J; Cobb M; Avery L
    Cell Metab; 2006 Apr; 3(4):237-45. PubMed ID: 16581001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans.
    Murakami H; Bessinger K; Hellmann J; Murakami S
    J Neurosci; 2005 Nov; 25(47):10894-904. PubMed ID: 16306402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthosteric and allosteric drug binding sites in the Caenorhabditis elegans mgl-2 metabotropic glutamate receptor.
    Tharmalingam S; Burns AR; Roy PJ; Hampson DR
    Neuropharmacology; 2012 Sep; 63(4):667-74. PubMed ID: 22652059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors.
    Naß J; Efferth T
    Phytomedicine; 2021 Jan; 81():153439. PubMed ID: 33352493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
    Cui M; Wang Y; Cavaleri J; Kelson T; Teng Y; Han M
    Genetics; 2017 Feb; 205(2):775-785. PubMed ID: 27974500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy.
    Carranza ADV; Saragusti A; Chiabrando GA; Carrari F; Asis R
    Phytomedicine; 2020 Jan; 66():153132. PubMed ID: 31790899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.