These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 19136626)

  • 1. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination.
    Prakash R; Satory D; Dray E; Papusha A; Scheller J; Kramer W; Krejci L; Klein H; Haber JE; Sung P; Ira G
    Genes Dev; 2009 Jan; 23(1):67-79. PubMed ID: 19136626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes.
    Mitchel K; Lehner K; Jinks-Robertson S
    PLoS Genet; 2013; 9(3):e1003340. PubMed ID: 23516370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Helicase Mph1
    Sandhu R; Monge Neria F; Monge Neria J; Chen X; Hollingsworth NM; Börner GV
    Dev Cell; 2020 May; 53(4):458-472.e5. PubMed ID: 32386601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination.
    Dupaigne P; Le Breton C; Fabre F; Gangloff S; Le Cam E; Veaute X
    Mol Cell; 2008 Feb; 29(2):243-54. PubMed ID: 18243118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast.
    Ira G; Malkova A; Liberi G; Foiani M; Haber JE
    Cell; 2003 Nov; 115(4):401-11. PubMed ID: 14622595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.
    Ward TA; Dudášová Z; Sarkar S; Bhide MR; Vlasáková D; Chovanec M; McHugh PJ
    PLoS Genet; 2012; 8(8):e1002884. PubMed ID: 22912599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein.
    Zheng XF; Prakash R; Saro D; Longerich S; Niu H; Sung P
    DNA Repair (Amst); 2011 Oct; 10(10):1034-43. PubMed ID: 21880555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates.
    Mazón G; Symington LS
    Mol Cell; 2013 Oct; 52(1):63-74. PubMed ID: 24119400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance.
    Silva S; Altmannova V; Luke-Glaser S; Henriksen P; Gallina I; Yang X; Choudhary C; Luke B; Krejci L; Lisby M
    Genes Dev; 2016 Mar; 30(6):700-17. PubMed ID: 26966248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Processing of Displacement Loops during Recombinational DNA Repair.
    Piazza A; Shah SS; Wright WD; Gore SK; Koszul R; Heyer WD
    Mol Cell; 2019 Mar; 73(6):1255-1266.e4. PubMed ID: 30737186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress.
    Panico ER; Ede C; Schildmann M; Schürer KA; Kramer W
    Yeast; 2010 Jan; 27(1):11-27. PubMed ID: 19918932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae.
    Jain S; Sugawara N; Mehta A; Ryu T; Haber JE
    Genetics; 2016 Jun; 203(2):667-75. PubMed ID: 27075725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budding yeast Mph1 promotes sister chromatid interactions by a mechanism involving strand invasion.
    Ede C; Rudolph CJ; Lehmann S; Schürer KA; Kramer W
    DNA Repair (Amst); 2011 Jan; 10(1):45-55. PubMed ID: 20951099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase.
    Prakash R; Krejci L; Van Komen S; Anke Schürer K; Kramer W; Sung P
    J Biol Chem; 2005 Mar; 280(9):7854-60. PubMed ID: 15634678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair.
    Saponaro M; Callahan D; Zheng X; Krejci L; Haber JE; Klein HL; Liberi G
    PLoS Genet; 2010 Feb; 6(2):e1000858. PubMed ID: 20195513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair.
    Tay YD; Sidebotham JM; Wu L
    Nucleic Acids Res; 2010 Apr; 38(6):1889-901. PubMed ID: 20047969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae.
    Mankouri HW; Ngo HP; Hickson ID
    Mol Biol Cell; 2009 Mar; 20(6):1683-94. PubMed ID: 19158388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast.
    Luke-Glaser S; Luke B
    PLoS One; 2012; 7(7):e42028. PubMed ID: 22848695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair.
    Mehta A; Beach A; Haber JE
    Mol Cell; 2017 Feb; 65(3):515-526.e3. PubMed ID: 28065599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae.
    Stafa A; Donnianni RA; Timashev LA; Lam AF; Symington LS
    Genetics; 2014 Apr; 196(4):1017-28. PubMed ID: 24496010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.