BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19136720)

  • 1. Functional unfolding of alpha1-antitrypsin probed by hydrogen-deuterium exchange coupled with mass spectrometry.
    Baek JH; Yang WS; Lee C; Yu MH
    Mol Cell Proteomics; 2009 May; 8(5):1072-81. PubMed ID: 19136720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative unfolding of a metastable serpin to a molten globule suggests a link between functional and folding energy landscapes.
    Tsutsui Y; Wintrode PL
    J Mol Biol; 2007 Aug; 371(1):245-55. PubMed ID: 17568610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.
    Maddur AA; Swanson R; Izaguirre G; Gettins PG; Olson ST
    J Biol Chem; 2013 Nov; 288(44):32020-35. PubMed ID: 24047901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions causing the kinetic trap in serpin protein folding.
    Im H; Woo MS; Hwang KY; Yu MH
    J Biol Chem; 2002 Nov; 277(48):46347-54. PubMed ID: 12244055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding mechanism of the metastable serpin α1-antitrypsin.
    Tsutsui Y; Dela Cruz R; Wintrode PL
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4467-72. PubMed ID: 22392975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry.
    Tsutsui Y; Kuri B; Sengupta T; Wintrode PL
    J Biol Chem; 2008 Nov; 283(45):30804-11. PubMed ID: 18794298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early hydrophobic collapse of α₁-antitrypsin facilitates formation of a metastable state: insights from oxidative labeling and mass spectrometry.
    Stocks BB; Sarkar A; Wintrode PL; Konermann L
    J Mol Biol; 2012 Nov; 423(5):789-99. PubMed ID: 22940366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the equilibrium denaturation of the serpin alpha(1)-antitrypsin with single tryptophan mutants; evidence for structure in the urea unfolded state.
    Tew DJ; Bottomley SP
    J Mol Biol; 2001 Nov; 313(5):1161-9. PubMed ID: 11700071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the local conformational change of alpha1-antitrypsin.
    Baek JH; Im H; Kang UB; Seong KM; Lee C; Kim J; Yu MH
    Protein Sci; 2007 Sep; 16(9):1842-50. PubMed ID: 17660256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a human alpha1-antitrypsin variant that is as stable as ovalbumin.
    Lee KN; Im H; Kang SW; Yu MH
    J Biol Chem; 1998 Jan; 273(5):2509-16. PubMed ID: 9446551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted regulation of inhibitory activity of alpha 1-antitrypsin by the native strain distributed throughout the molecule.
    Seo EJ; Lee C; Yu MH
    J Biol Chem; 2002 Apr; 277(16):14216-20. PubMed ID: 11834734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of latent alpha 1-antitrypsin.
    Lomas DA; Elliott PR; Chang WS; Wardell MR; Carrell RW
    J Biol Chem; 1995 Mar; 270(10):5282-8. PubMed ID: 7890640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local and global effects of a cavity filling mutation in a metastable serpin.
    Sengupta T; Tsutsui Y; Wintrode PL
    Biochemistry; 2009 Sep; 48(34):8233-40. PubMed ID: 19624115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the structure of folding cores in TIM barrel proteins by hydrogen exchange mass spectrometry: the roles of motif and sequence for the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus.
    Gu Z; Zitzewitz JA; Matthews CR
    J Mol Biol; 2007 Apr; 368(2):582-94. PubMed ID: 17359995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A.
    Ryu SE; Choi HJ; Kwon KS; Lee KN; Yu MH
    Structure; 1996 Oct; 4(10):1181-92. PubMed ID: 8939743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of helix I and strand 5A in the folding, function and misfolding of α1-antitrypsin.
    Knaupp AS; Keleher S; Yang L; Dai W; Bottomley SP; Pearce MC
    PLoS One; 2013; 8(1):e54766. PubMed ID: 23382962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the role of the F-helix in serpin stability through a single tryptophan substitution.
    Cabrita LD; Whisstock JC; Bottomley SP
    Biochemistry; 2002 Apr; 41(14):4575-81. PubMed ID: 11926819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive Center Loop Insertion in α-1-Antitrypsin Captured by Accelerated Molecular Dynamics Simulation.
    Andersen OJ; Risør MW; Poulsen EC; Nielsen NC; Miao Y; Enghild JJ; Schiøtt B
    Biochemistry; 2017 Jan; 56(4):634-646. PubMed ID: 27995800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding.
    Nyon MP; Prentice T; Day J; Kirkpatrick J; Sivalingam GN; Levy G; Haq I; Irving JA; Lomas DA; Christodoulou J; Gooptu B; Thalassinos K
    Protein Sci; 2015 Aug; 24(8):1301-12. PubMed ID: 26011795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A.
    Stratikos E; Gettins PG
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4808-13. PubMed ID: 10220375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.