BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19137142)

  • 21. The use of tree-rings and foliage as an archive of volcanogenic cation deposition.
    Watt SF; Pyle DM; Mather TA; Day JA; Aiuppa A
    Environ Pollut; 2007 Jul; 148(1):48-61. PubMed ID: 17239510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees.
    Xiao HY; Wang YL; Tang CG; Liu CQ
    Environ Pollut; 2012 Mar; 162():80-5. PubMed ID: 22243850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury in canopy leaves of French Guiana in remote areas.
    Mélières MA; Pourchet M; Charles-Dominique P; Gaucher P
    Sci Total Environ; 2003 Jul; 311(1-3):261-7. PubMed ID: 12826397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cadmium availability in soil and retention in oak roots: potential for phytostabilization.
    Domínguez MT; Madrid F; Marañón T; Murillo JM
    Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Root uptake of lead by Norway spruce grown on 210Pb spiked soils.
    Hovmand MF; Nielsen SP; Johnsen I
    Environ Pollut; 2009 Feb; 157(2):404-9. PubMed ID: 19013698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eutrophication trends in forest soils in Galicia (NW Spain) caused by the atmospheric deposition of nitrogen compounds.
    Rodríguez L; Macías F
    Chemosphere; 2006 Jun; 63(9):1598-609. PubMed ID: 16307780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological responses of lichens to factorial fumigations with nitric acid and ozone.
    Riddell J; Padgett PE; Nash TH
    Environ Pollut; 2012 Nov; 170():202-10. PubMed ID: 22832332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan.
    Bao H; Kondo A; Kaga A; Tada M; Sakaguti K; Inoue Y; Shimoda Y; Narumi D; Machimura T
    Environ Res; 2008 Feb; 106(2):156-69. PubMed ID: 18023428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy.
    Gerosa G; Marzuoli R; Desotgiu R; Bussotti F; Ballarin-Denti A
    Environ Pollut; 2009 May; 157(5):1497-505. PubMed ID: 19019512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest.
    Kou L; Chen W; Jiang L; Dai X; Fu X; Wang H; Li S
    Sci Total Environ; 2018 May; 624():611-620. PubMed ID: 29272830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China).
    Jim CY; Chen WY
    J Environ Manage; 2008 Sep; 88(4):665-76. PubMed ID: 17499909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution.
    Eatough Jones M; Paine TD; Fenn ME
    Environ Pollut; 2008 Feb; 151(3):434-42. PubMed ID: 17574712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa.
    Wilson D; Stock WD; Hedderson T
    Environ Pollut; 2009 Mar; 157(3):938-45. PubMed ID: 19046617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition.
    Belivermiş M; Kiliç O; Cotuk Y; Topcuoğlu S; Kalayci G; Peştreli D
    Appl Radiat Isot; 2010 Dec; 68(12):2433-7. PubMed ID: 20678943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atmospheric sulfur and nitrogen deposition in the Athabasca oil sands region is correlated with foliar nutrient levels and soil chemical properties.
    MacKenzie MD; Dietrich ST
    Sci Total Environ; 2020 Apr; 711():134737. PubMed ID: 31812381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses.
    Frost CJ; Hunter MD
    Oecologia; 2007 Feb; 151(1):42-53. PubMed ID: 17089141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atmospheric deposition and canopy interactions of major ions in a forest.
    Lindberg SE; Lovett GM; Richter DD; Johnson DW
    Science; 1986 Jan; 231(4734):141-5. PubMed ID: 17842631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is tree growth reduction related to direct foliar injuries or soil chemistry modifications?
    Aznar JC; Richer-Laflèche M; Paucar-Muñoz H; Bordeleau M; Bégin Y
    Chemosphere; 2009 Sep; 76(10):1366-71. PubMed ID: 19625068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil acidification and foliar nutrient status of Ontario's deciduous forest in 1986 and 2005.
    Miller DE; Watmough SA
    Environ Pollut; 2009 Feb; 157(2):664-72. PubMed ID: 18824282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Belowground fate of (15)N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment.
    Garten CT; Brice DJ
    Rapid Commun Mass Spectrom; 2009 Oct; 23(19):3094-100. PubMed ID: 19705377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.