These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19137181)

  • 1. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries.
    Song Z; Zhan H; Zhou Y
    Chem Commun (Camb); 2009 Jan; (4):448-50. PubMed ID: 19137181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries.
    Song Z; Xu T; Gordin ML; Jiang YB; Bae IT; Xiao Q; Zhan H; Liu J; Wang D
    Nano Lett; 2012 May; 12(5):2205-11. PubMed ID: 22449138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W; Cheng F; Tao Z; Chen J
    J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel cathode material for rechargeable lithium-sulfur batteries.
    Gronwald O; Garsuch A; Panchenko A
    Chimia (Aarau); 2013; 67(10):719-23. PubMed ID: 24388137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performing LiMgxCuyCo₁-x-yO₂ cathode material for lithium rechargeable batteries.
    Nithya C; Thirunakaran R; Sivashanmugam A; Gopukumar S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4040-6. PubMed ID: 22786617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries.
    Li X; Cheng F; Guo B; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14017-24. PubMed ID: 16852760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film rechargeable lithium batteries for implantable devices.
    Bates JB; Dudney NJ
    ASAIO J; 1997; 43(5):M644-7. PubMed ID: 9360124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous LiNi(1/3)Co(1/3)Mn(1/3)O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries.
    Wang F; Xiao S; Chang Z; Yang Y; Wu Y
    Chem Commun (Camb); 2013 Oct; 49(80):9209-11. PubMed ID: 23998182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Molecular Structure and Electrode Architecture of Anthraquinone-Containing Polymer Cathode for High-Performance Lithium-Ion Batteries.
    Yang J; Shi Y; Sun P; Xiong P; Xu Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42305-42312. PubMed ID: 31622549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction.
    Guo J; Yang Z; Yu Y; Abruña HD; Archer LA
    J Am Chem Soc; 2013 Jan; 135(2):763-7. PubMed ID: 23234561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material.
    Seki S; Kobayashi Y; Miyashiro H; Ohno Y; Usami A; Mita Y; Watanabe M; Terada N
    Chem Commun (Camb); 2006 Feb; (5):544-5. PubMed ID: 16432577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rechargeable molecular cluster batteries.
    Yoshikawa H; Kazama C; Awaga K; Satoh M; Wada J
    Chem Commun (Camb); 2007 Aug; (30):3169-70. PubMed ID: 17653377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiMn(0.8)Fe(0.2)PO(4): an advanced cathode material for rechargeable lithium batteries.
    Martha SK; Grinblat J; Haik O; Zinigrad E; Drezen T; Miners JH; Exnar I; Kay A; Markovsky B; Aurbach D
    Angew Chem Int Ed Engl; 2009; 48(45):8559-63. PubMed ID: 19795430
    [No Abstract]   [Full Text] [Related]  

  • 18. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TiS2 nanotubes as the cathode materials of Mg-ion batteries.
    Tao ZL; Xu LN; Gou XL; Chen J; Yuan HT
    Chem Commun (Camb); 2004 Sep; (18):2080-1. PubMed ID: 15367984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Issues and challenges facing rechargeable lithium batteries.
    Tarascon JM; Armand M
    Nature; 2001 Nov; 414(6861):359-67. PubMed ID: 11713543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.