These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19137181)

  • 21. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries.
    Venkata Narayanan NS; Ashokraj BV; Sampath S
    J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries.
    Liu L; Hou Y; Wu X; Xiao S; Chang Z; Yang Y; Wu Y
    Chem Commun (Camb); 2013 Dec; 49(98):11515-7. PubMed ID: 24175320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries.
    Ji L; Zhang X
    Nanotechnology; 2009 Apr; 20(15):155705. PubMed ID: 19420557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries.
    Zhang L; Zhang X; Wang Z; Xu J; Xu D; Wang L
    Chem Commun (Camb); 2012 Aug; 48(61):7598-600. PubMed ID: 22735741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrodes with high power and high capacity for rechargeable lithium batteries.
    Kang K; Meng YS; Bréger J; Grey CP; Ceder G
    Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries.
    Liu H; Gao P; Fang J; Yang G
    Chem Commun (Camb); 2011 Aug; 47(32):9110-2. PubMed ID: 21735012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Halogen: a high-capacity cathode for rechargeable alkaline batteries.
    Pan JQ; Sun YZ; Wan PY; Wang ZH; Liu XG
    Chem Commun (Camb); 2005 Jul; (26):3340-2. PubMed ID: 15983667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prototype systems for rechargeable magnesium batteries.
    Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E
    Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rechargeable batteries driven by redox reactions of Mn12 clusters with structural changes: XAFS analyses of the charging/discharging processes in molecular cluster batteries.
    Yoshikawa H; Hamanaka S; Miyoshi Y; Kondo Y; Shigematsu S; Akutagawa N; Sato M; Yokoyama T; Awaga K
    Inorg Chem; 2009 Oct; 48(19):9057-9. PubMed ID: 19746899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries.
    Mo R; Du Y; Zhang N; Rooney D; Sun K
    Chem Commun (Camb); 2013 Oct; 49(80):9143-5. PubMed ID: 23985937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.
    Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF
    Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries.
    Yin L; Wang J; Yu X; Monroe CW; NuLi Y; Yang J
    Chem Commun (Camb); 2012 Aug; 48(63):7868-70. PubMed ID: 22785430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu(0.95)V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries.
    Hu W; Zhang XB; Cheng YL; Wu YM; Wang LM
    Chem Commun (Camb); 2011 May; 47(18):5250-2. PubMed ID: 21461425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of tetrahedral LiFeO2 and its behavior as a cathode in rechargeable lithium batteries.
    Armstrong AR; Tee DW; La Mantia F; Novák P; Bruce PG
    J Am Chem Soc; 2008 Mar; 130(11):3554-9. PubMed ID: 18284239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries.
    Besenhard JO; Winter M
    Chemphyschem; 2002 Feb; 3(2):155-9. PubMed ID: 12503122
    [No Abstract]   [Full Text] [Related]  

  • 36. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries.
    NuLi Y; Yang J; Li Y; Wang J
    Chem Commun (Camb); 2010 Jun; 46(21):3794-6. PubMed ID: 20393663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries.
    Saubanère M; Ben Yahia M; Lebègue S; Doublet ML
    Nat Commun; 2014 Nov; 5():5559. PubMed ID: 25418324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries.
    Yang CP; Xin S; Yin YX; Ye H; Zhang J; Guo YG
    Angew Chem Int Ed Engl; 2013 Aug; 52(32):8363-7. PubMed ID: 23804496
    [No Abstract]   [Full Text] [Related]  

  • 40. Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries.
    Wu B; Song H; Zhou J; Chen X
    Chem Commun (Camb); 2011 Aug; 47(30):8653-5. PubMed ID: 21725544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.