These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19137181)

  • 41. The double perovskite oxide Sr2CrMoO(6-δ) as an efficient electrocatalyst for rechargeable lithium air batteries.
    Ma Z; Yuan X; Li L; Ma ZF
    Chem Commun (Camb); 2014 Dec; 50(94):14855-8. PubMed ID: 25325080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy.
    Vizintin A; Bitenc J; Kopač Lautar A; Pirnat K; Grdadolnik J; Stare J; Randon-Vitanova A; Dominko R
    Nat Commun; 2018 Feb; 9(1):661. PubMed ID: 29445156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries.
    Sasidharan M; Nakashima K; Gunawardhana N; Yokoi T; Inoue M; Yusa S; Yoshio M; Tatsumi T
    Chem Commun (Camb); 2011 Jun; 47(24):6921-3. PubMed ID: 21589956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New nanomaterials for light weight lithium batteries.
    Stura E; Nicolini C
    Anal Chim Acta; 2006 May; 568(1-2):57-64. PubMed ID: 17761246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.
    Xi K; Cao S; Peng X; Ducati C; Kumar RV; Cheetham AK
    Chem Commun (Camb); 2013 Mar; 49(22):2192-4. PubMed ID: 23396518
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries.
    Haetge J; Djerdj I; Brezesinski T
    Chem Commun (Camb); 2012 Jul; 48(53):6726-8. PubMed ID: 22641450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries.
    Grigoriants I; Sominski L; Li H; Ifargan I; Aurbach D; Gedanken A
    Chem Commun (Camb); 2005 Feb; (7):921-3. PubMed ID: 15700082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solid state electrodes for high energy batteries.
    Murphy DW; Christian PA
    Science; 1979 Aug; 205(4407):651-6. PubMed ID: 17781245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of sulfur loading on the electrochemical performance of a sulfur-polymer composite cathode coated on aluminium foil.
    Doan TN; Gosselink D; Hoang TK; Chen P
    Phys Chem Chem Phys; 2014 Jul; 16(27):13843-8. PubMed ID: 24910180
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of Hydrazine-Embedded Heterocyclic Compounds to High Voltage Rechargeable Lithium Organic Batteries.
    Shimizu T; Yamamoto K; Pandit P; Yoshikawa H; Higashibayashi S
    Sci Rep; 2018 Jan; 8(1):579. PubMed ID: 29330491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel rechargeable Li-AgO battery with hybrid electrolytes.
    Li H; Wang Y; He P; Zhou H
    Chem Commun (Camb); 2010 Mar; 46(12):2055-7. PubMed ID: 20221490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries.
    Genorio B; Pirnat K; Cerc-Korosec R; Dominko R; Gaberscek M
    Angew Chem Int Ed Engl; 2010 Sep; 49(40):7222-4. PubMed ID: 20803589
    [No Abstract]   [Full Text] [Related]  

  • 53. A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries.
    Yue JL; Yin WW; Cao MH; Zulipiya S; Zhou YN; Fu ZW
    Chem Commun (Camb); 2015 Nov; 51(86):15712-5. PubMed ID: 26365902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental visualization of lithium diffusion in LixFePO4.
    Nishimura S; Kobayashi G; Ohoyama K; Kanno R; Yashima M; Yamada A
    Nat Mater; 2008 Sep; 7(9):707-11. PubMed ID: 18690238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel high energy density rechargeable lithium/air battery.
    Zhang T; Imanishi N; Shimonishi Y; Hirano A; Takeda Y; Yamamoto O; Sammes N
    Chem Commun (Camb); 2010 Mar; 46(10):1661-3. PubMed ID: 20177608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries.
    Riaz A; Jung KN; Chang W; Lee SB; Lim TH; Park SJ; Song RH; Yoon S; Shin KH; Lee JW
    Chem Commun (Camb); 2013 Jul; 49(53):5984-6. PubMed ID: 23715057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VO(x)-impregnated 0.5Li2MnO3-0.5LiNi(0.4)Co(0.2)Mn(0.4)O2 cathode.
    Park KS; Benayad A; Park MS; Choi W; Im D
    Chem Commun (Camb); 2010 Jun; 46(23):4190-2. PubMed ID: 20458377
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advanced rechargeable Na-CO
    Guo L; Li B; Thirumal V; Song J
    Chem Commun (Camb); 2019 Jul; 55(55):7946-7949. PubMed ID: 31219113
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries.
    Reshak AH; Ordóñez Ortíz DA
    J Phys Chem B; 2009 Oct; 113(40):13208-15. PubMed ID: 19754092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.