These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19137287)

  • 1. Indigenous microfungi and plants reduce soil nonylphenol contamination and stimulate resident microfungal communities.
    Girlanda M; Favero-Longo SE; Lazzari A; Segreto R; Perotto S; Siniscalco C
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):359-70. PubMed ID: 19137287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation and plant uptake of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils.
    Sjöström AE; Collins CD; Smith SR; Shaw G
    Environ Pollut; 2008 Dec; 156(3):1284-9. PubMed ID: 18433956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of nonylphenol in a continuous packed-bed bioreactor.
    Soares A; Guieysse B; Mattiasson B
    Biotechnol Lett; 2003 Jun; 25(12):927-33. PubMed ID: 12889825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Degradation of nonylphenol and short chain nonylphenol polyethoxylates in soil].
    Qiao YS; Zhang J; Yang M; Zhang Y; Xu DY
    Huan Jing Ke Xue; 2008 Apr; 29(4):869-73. PubMed ID: 18637330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol.
    Soares A; Jonasson K; Terrazas E; Guieysse B; Mattiasson B
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):719-25. PubMed ID: 15735968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil fungi for mycoremediation of arsenic pollution in agriculture soils.
    Singh M; Srivastava PK; Verma PC; Kharwar RN; Singh N; Tripathi RD
    J Appl Microbiol; 2015 Nov; 119(5):1278-90. PubMed ID: 26348882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil.
    Covino S; D'Annibale A; Stazi SR; Cajthaml T; Čvančarová M; Stella T; Petruccioli M
    Sci Total Environ; 2015 Feb; 505():545-54. PubMed ID: 25461057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation.
    Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS
    J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.
    Stefanowicz AM; Kapusta P; Szarek-Łukaszewska G; Grodzińska K; Niklińska M; Vogt RD
    Sci Total Environ; 2012 Nov; 439():211-9. PubMed ID: 23073370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of 4-nonylphenol in a biosolids amended soil.
    Brown S; Devin-Clarke D; Doubrava M; O'Connor G
    Chemosphere; 2009 Apr; 75(4):549-54. PubMed ID: 19167020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico.
    Ortega-Larrocea Mdel P; Xoconostle-Cázares B; Maldonado-Mendoza IE; Carrillo-González R; Hernández-Hernández J; Garduño MD; López-Meyer M; Gómez-Flores L; González-Chávez Mdel C
    Environ Pollut; 2010 May; 158(5):1922-31. PubMed ID: 19910092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of halogenated nonylphenols with sphingobium xenophagum bayram and a nonylphenol-degrading soil-enrichment culture.
    Li Y; Montgomery-Brown J; Reinhard M
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):212-9. PubMed ID: 20677004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil.
    Alarcón A; Davies FT; Autenrieth RL; Zuberer DA
    Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal enzymes for environmental management.
    Kües U
    Curr Opin Biotechnol; 2015 Jun; 33():268-78. PubMed ID: 25867110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.
    Chikere CB; Surridge K; Okpokwasili GC; Cloete TE
    Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of soil compaction on microfungal community structure in two soil types in Bartin Province, Turkey.
    Kara O; Bolat I
    J Basic Microbiol; 2007 Oct; 47(5):394-9. PubMed ID: 17910103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.