These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19137334)

  • 1. High cell density production of Deinococcus radiodurans under optimized conditions.
    He Y
    J Ind Microbiol Biotechnol; 2009 Apr; 36(4):539-46. PubMed ID: 19137334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese is a Deinococcus radiodurans growth limiting factor in rich culture medium.
    Borsetti F; Dal Piaz F; D'Alessio F; Stefan A; Brandimarti R; Sarkar A; Datta A; Montón Silva A; den Blaauwen T; Alberto M; Spisni E; Hochkoeppler A
    Microbiology (Reading); 2018 Oct; 164(10):1266-1275. PubMed ID: 30052171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture.
    Bornot J; Molina-Jouve C; Uribelarrea JL; Gorret N
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1281-90. PubMed ID: 24323286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities.
    Holland AD; Rothfuss HM; Lidstrom ME
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):1074-82. PubMed ID: 16575566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Polyphosphate Metabolism Coordinating with Manganese Ions Defends against Oxidative Stress in the Extreme Bacterium Deinococcus radiodurans.
    Dai S; Xie Z; Wang B; Yu N; Zhao J; Zhou Y; Hua Y; Tian B
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452031
    [No Abstract]   [Full Text] [Related]  

  • 6. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.
    Chen A; Contreras LM; Keitz BK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Deinococcus radiodurans under controlled growth conditions.
    Jena SS; Joshi HM; Sabareesh KP; Tata BV; Rao TS
    Biophys J; 2006 Oct; 91(7):2699-707. PubMed ID: 16829564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.
    Yamashiro T; Murata K; Kawai S
    Extremophiles; 2017 Mar; 21(2):399-407. PubMed ID: 28083699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of gamma-ray irradiation on the Mn(II) speciation in Deinococcus radiodurans and the potential role of Mn(II)-orthophosphates.
    Bruch EM; de Groot A; Un S; Tabares LC
    Metallomics; 2015 May; 7(5):908-16. PubMed ID: 25811292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic determinants of radiation resistance in Deinococcus radiodurans.
    Venkateswaran A; McFarlan SC; Ghosal D; Minton KW; Vasilenko A; Makarova K; Wackett LP; Daly MJ
    Appl Environ Microbiol; 2000 Jun; 66(6):2620-6. PubMed ID: 10831446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Mn(II) on the autoinducing growth inhibition factor in Deinococcus radiodurans.
    Lee HY; Wong TY; Kuo J; Liu JK
    Prep Biochem Biotechnol; 2014 Oct; 44(7):645-52. PubMed ID: 24215305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of manganese ions [Mn(II)] transporter genes DR1709 or DR2523 in extremely radio-resistant bacterium Deinococcus radiodurans.
    Chang S; Shu H; Li Z; Wang Y; Chen L; Hua Y; Qin G
    Wei Sheng Wu Xue Bao; 2009 Apr; 49(4):438-44. PubMed ID: 19621629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase.
    Sukhi SS; Shashidhar R; Kumar SA; Bandekar JR
    FEMS Microbiol Lett; 2009 Aug; 297(1):49-53. PubMed ID: 19490129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-coverage proteomics reveals methionine auxotrophy in Deinococcus radiodurans.
    Zhou Y; Shen P; Lan Q; Deng C; Zhang Y; Li Y; Wei W; Wang Y; Su N; He F; Xie Q; Lyu Z; Yang D; Xu P
    Proteomics; 2017 Jul; 17(13-14):. PubMed ID: 28608649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological decolorization of malachite green by Deinococcus radiodurans R1.
    Lv GY; Cheng JH; Chen XY; Zhang ZF; Fan LF
    Bioresour Technol; 2013 Sep; 144():275-80. PubMed ID: 23876656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments.
    Brim H; Venkateswaran A; Kostandarithes HM; Fredrickson JK; Daly MJ
    Appl Environ Microbiol; 2003 Aug; 69(8):4575-82. PubMed ID: 12902245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Deinococcus radiodurans for pinene production from glycerol.
    Helalat SH; Jers C; Bebahani M; Mohabatkar H; Mijakovic I
    Microb Cell Fact; 2021 Sep; 20(1):187. PubMed ID: 34565367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the survival mechanisms of Deinococcus radiodurans against oxidative stress by targeting thioredoxin reductase redox system.
    Maqbool I; Ponniresan VK; Govindasamy K; Prasad NR
    Arch Microbiol; 2020 Nov; 202(9):2355-2366. PubMed ID: 31570971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of di-n-butyl phthalate in a soil microcosm.
    Liao CS
    J Environ Sci Health B; 2010 Jul; 45(5):366-71. PubMed ID: 20512726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm.
    Manobala T; Shukla SK; Rao TS; Kumar MD
    J Biosci; 2019 Oct; 44(5):. PubMed ID: 31719231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.