These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19137546)

  • 1. A comprehensive evaluation of imidazole-zinc reverse stain for current proteomic researches.
    Lin CY; Wang V; Shui HA; Juang RH; Hour AL; Chen PS; Huang HM; Wu SY; Lee JC; Tsai TL; Chen HM
    Proteomics; 2009 Feb; 9(3):696-709. PubMed ID: 19137546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisit of imidazole-zinc reverse stain for protein polyacrylamide gel electrophoresis.
    Chen HM
    Methods Mol Biol; 2012; 869():487-95. PubMed ID: 22585514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometric compatibility of Deep Purple and SYPRO Ruby total protein stains for high-throughput proteomics using large-format two-dimensional gel electrophoresis.
    Nock CM; Ball MS; White IR; Skehel JM; Bill L; Karuso P
    Rapid Commun Mass Spectrom; 2008; 22(6):881-6. PubMed ID: 18293286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput negative detection of SDS-PAGE separated proteins and its application for proteomics.
    Cong WT; Hwang SY; Jin LT; He HZ; Choi JK
    Electrophoresis; 2010 Jan; 31(2):411-20. PubMed ID: 20024926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive reverse staining of bacterial lipopolysaccharides on polyacrylamide gels by using zinc and imidazole salts.
    Hardy E; Pupo E; Castellanos-Serra L; Reyes J; Fernández-Patrón C
    Anal Biochem; 1997 Jan; 244(1):28-32. PubMed ID: 9025903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisit of Imidazole-Zinc Reverse Stain for Protein Polyacrylamide Gel Electrophoresis.
    Chen HM
    Methods Mol Biol; 2018; 1853():139-147. PubMed ID: 30097939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved dynamic range of protein quantification in silver-stained gels by modelling gel images over time.
    Grove H; Faergestad EM; Hollung K; Martens H
    Electrophoresis; 2009 Jun; 30(11):1856-62. PubMed ID: 19517441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing detection methods for gel-based proteomic analyses.
    Harris LR; Churchward MA; Butt RH; Coorssen JR
    J Proteome Res; 2007 Apr; 6(4):1418-25. PubMed ID: 17367184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of SYPRO orange and SYPRO red protein gel stains.
    Steinberg TH; Haugland RP; Singer VL
    Anal Biochem; 1996 Aug; 239(2):238-45. PubMed ID: 8811917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of SYPRO Ruby and Deep Purple using commonly available UV transilluminator: wide-scale application in proteomic research.
    Chakravarti B; Ratanaprayul W; Dalal N; Chakravarti DN
    J Proteome Res; 2008 Jul; 7(7):2797-802. PubMed ID: 18510358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of human plasma proteins by two-dimensional gel electrophoresis and by antibody arrays following depletion of high-abundance proteins.
    Desrosiers RR; Beaulieu E; Buchanan M; Béliveau R
    Cell Biochem Biophys; 2007; 49(3):182-95. PubMed ID: 17952643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-sensitivity staining of proteins for one- and two-dimensional gel electrophoresis using post migration covalent staining with a ruthenium fluorophore.
    Tokarski C; Cren-Olivé C; Fillet M; Rolando C
    Electrophoresis; 2006 Apr; 27(7):1407-16. PubMed ID: 16502460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility.
    Jin LT; Li XK; Cong WT; Hwang SY; Choi JK
    Anal Biochem; 2008 Dec; 383(2):137-43. PubMed ID: 18804088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic comparison of technical details in CBB methods and development of a sensitive GAP stain for comparative proteomic analysis.
    Wang X; Wang D; Wang D; Wang H; Chang L; Yi X; Peng M; Guo A
    Electrophoresis; 2012 Jan; 33(2):296-306. PubMed ID: 22222974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of biomolecules in electrophoresis gels with salts of imidazole and zinc II: a decade of research.
    Castellanos-Serra L; Hardy E
    Electrophoresis; 2001 Mar; 22(5):864-73. PubMed ID: 11332754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative staining with zinc-imidazole of gel electrophoresis-separated nucleic acids.
    Hardy E; Pupo E; Casalvilla R; Sosa AE; Trujillo LE; López E; Castellanos-Serra L
    Electrophoresis; 1996 Oct; 17(10):1537-41. PubMed ID: 8957176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coomassie blue as a near-infrared fluorescent stain: a systematic comparison with Sypro Ruby for in-gel protein detection.
    Butt RH; Coorssen JR
    Mol Cell Proteomics; 2013 Dec; 12(12):3834-50. PubMed ID: 24043422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels.
    Smejkal GB; Robinson MH; Lazarev A
    Electrophoresis; 2004 Aug; 25(15):2511-9. PubMed ID: 15300770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staining efficiency of specific proteins depends on the staining method: wheat gluten proteins.
    van den Broeck HC; America AH; Smulders MJ; Gilissen LJ; van der Meer IM
    Proteomics; 2008 May; 8(9):1880-4. PubMed ID: 18398878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The scaled volume as an image analysis variable for detecting changes in protein expression levels by silver stain.
    Dutt MJ; Lee KH
    Electrophoresis; 2001 May; 22(9):1627-32. PubMed ID: 11425218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.