BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 19137620)

  • 1. Tuning the conformational properties of the prion peptide.
    Ho CC; Lee LY; Huang KT; Lin CC; Ku MY; Yang CC; Chan SI; Hsu RL; Chen RP
    Proteins; 2009 Jul; 76(1):213-25. PubMed ID: 19137620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the conformation properties of a peptide by glycosylation and phosphorylation.
    Liang FC; Chen RP; Lin CC; Huang KT; Chan SI
    Biochem Biophys Res Commun; 2006 Apr; 342(2):482-8. PubMed ID: 16487934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the anti-amyloidogenic effect of O-mannosylation, O-galactosylation, and O-GalNAc glycosylation.
    Lin C; Chen EH; Lee LY; Hsu RL; Luh FY; Yang LL; Chou CF; Huang LD; Lin CC; Chen RP
    Carbohydr Res; 2014 Mar; 387():46-53. PubMed ID: 24589445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein.
    Lin NS; Chao JC; Cheng HM; Chou FC; Chang CF; Chen YR; Chang YJ; Huang SJ; Chan JC
    Chemistry; 2010 May; 16(18):5492-9. PubMed ID: 20358555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation of prions and its effects on protein conformation relevant to amino acid mutations.
    Wong NK; Renouf DV; Lehmann S; Hounsell EF
    J Mol Graph Model; 2000 Apr; 18(2):126-34, 163-5. PubMed ID: 10994516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of peptides undergoing self-catalytic alpha-to-beta transition and amyloidogenesis.
    Mihara H; Takahashi Y; Ueno A
    Biopolymers; 1998; 47(1):83-92. PubMed ID: 9692329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions.
    Ricchelli F; Buggio R; Drago D; Salmona M; Forloni G; Negro A; Tognon G; Zatta P
    Biochemistry; 2006 May; 45(21):6724-32. PubMed ID: 16716083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: effects of glycosylation on solution conformation.
    McManus AM; Otvos L; Hoffmann R; Craik DJ
    Biochemistry; 1999 Jan; 38(2):705-14. PubMed ID: 9888811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylated foldamers: synthesis of carbohydrate-modified beta3hSer and incorporation into beta-peptides.
    Norgren AS; Norberg T; Arvidsson PI
    J Pept Sci; 2007 Nov; 13(11):717-27. PubMed ID: 17890640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146).
    Saracino GA; Villa A; Moro G; Cosentino U; Salmona M
    Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides.
    Bertho G; Bouvier G; Hoa GH; Girault JP
    Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical.
    Downing DT; Lazo ND
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):453-60. PubMed ID: 10510313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational studies on the MUC1 tandem repeat glycopeptides: implication for the enzymatic O-glycosylation of the mucin protein core.
    Kinarsky L; Suryanarayanan G; Prakash O; Paulsen H; Clausen H; Hanisch FG; Hollingsworth MA; Sherman S
    Glycobiology; 2003 Dec; 13(12):929-39. PubMed ID: 12925576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis.
    Tuchscherer G; Chandravarkar A; Camus MS; Bérard J; Murat K; Schmid A; Mimna R; Lashuel HA; Mutter M
    Biopolymers; 2007; 88(2):239-52. PubMed ID: 17206626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of peptide-based inhibitors of human islet amyloid polypeptide fibrillogenesis.
    Scrocchi LA; Chen Y; Waschuk S; Wang F; Cheung S; Darabie AA; McLaurin J; Fraser PE
    J Mol Biol; 2002 May; 318(3):697-706. PubMed ID: 12054816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of peptide substrates for mucin-type O-glycosylation.
    Kirnarsky L; Nomoto M; Ikematsu Y; Hassan H; Bennett EP; Cerny RL; Clausen H; Hollingsworth MA; Sherman S
    Biochemistry; 1998 Sep; 37(37):12811-7. PubMed ID: 9737858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p.
    van der Wel PC; Lewandowski JR; Griffin RG
    J Am Chem Soc; 2007 Apr; 129(16):5117-30. PubMed ID: 17397156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.