These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19137631)

  • 1. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks.
    Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG
    FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modelling of plant metabolic pathways.
    Rohwer JM
    J Exp Bot; 2012 Mar; 63(6):2275-92. PubMed ID: 22419742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining bioinformatics resources for the structural modelling of eukaryotic metabolic networks.
    Gille C; Hoffmann S; Holzhütter HG
    Genome Inform; 2005; 16(1):223-32. PubMed ID: 16362925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.
    Liebermeister W; Uhlendorf J; Klipp E
    Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks.
    Grimbs S; Selbig J; Bulik S; Holzhütter HG; Steuer R
    Mol Syst Biol; 2007; 3():146. PubMed ID: 18004279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling.
    Costa RS; Machado D; Rocha I; Ferreira EC
    IET Syst Biol; 2011 May; 5(3):157-63. PubMed ID: 21639589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemolytic anemias due to erythrocyte enzyme deficiencies.
    Jacobasch G; Rapoport SM
    Mol Aspects Med; 1996 Apr; 17(2):143-70. PubMed ID: 8813716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model reduction method for biochemical reaction networks.
    Rao S; van der Schaft A; van Eunen K; Bakker BM; Jayawardhana B
    BMC Syst Biol; 2014 May; 8():52. PubMed ID: 24885656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions.
    Werner A; Heinrich R
    Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches to the topology, stability and dynamics of metabolic networks.
    Steuer R
    Phytochemistry; 2007; 68(16-18):2139-51. PubMed ID: 17574639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of reduced metabolic networks.
    Holzhütter S; Holzhütter HG
    Chembiochem; 2004 Oct; 5(10):1401-22. PubMed ID: 15457535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substrate competition in kinetic models of metabolic networks.
    Schäuble S; Stavrum AK; Puntervoll P; Schuster S; Heiland I
    FEBS Lett; 2013 Sep; 587(17):2818-24. PubMed ID: 23811082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes.
    Colombo R; Damiani C; Gilbert D; Heiner M; Mauri G; Pescini D
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):251. PubMed ID: 30066662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.