These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19137982)

  • 1. [Application of phytases as functional ingredient in foods].
    Frontela C; Ros G; Martínez C
    Arch Latinoam Nutr; 2008 Sep; 58(3):215-20. PubMed ID: 19137982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Phytases on the Release of Bioactive Inositols, the Profile of Inositol Phosphates, and the Release of Selected Minerals in the Technology of Buckwheat Beer Production.
    Duliński R; Zdaniewicz M; Pater A; Poniewska D; Żyła K
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31973207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink.
    Theodoropoulos VCT; Turatti MA; Greiner R; Macedo GA; Pallone JAL
    Food Res Int; 2018 Jun; 108():68-73. PubMed ID: 29735102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phytase-assisted processing method on physicochemical and functional properties of soy protein isolate.
    Wang H; Chen Y; Hua Y; Kong X; Zhang C
    J Agric Food Chem; 2014 Nov; 62(45):10989-97. PubMed ID: 25333697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic.
    Oakley AJ
    Biochem Biophys Res Commun; 2010 Jul; 397(4):745-9. PubMed ID: 20541524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytase enzymology, applications, and biotechnology.
    Lei XG; Porres JM
    Biotechnol Lett; 2003 Nov; 25(21):1787-94. PubMed ID: 14677699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and fast kinetic assay for phytases using phytic acid-protein complex as substrate.
    Tran TT; Hatti-Kaul R; Dalsgaard S; Yu S
    Anal Biochem; 2011 Mar; 410(2):177-84. PubMed ID: 21050837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytic acid degradation as a means of improving iron absorption.
    Hurrell RF
    Int J Vitam Nutr Res; 2004 Nov; 74(6):445-52. PubMed ID: 15743020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies.
    Gibson RS; Raboy V; King JC
    Nutr Rev; 2018 Nov; 76(11):793-804. PubMed ID: 30010865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of minerals in legumes.
    Sandberg AS
    Br J Nutr; 2002 Dec; 88 Suppl 3():S281-5. PubMed ID: 12498628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway of phytate dephosphorylation by beta-propeller phytases of different origins.
    Greiner R; Lim BL; Cheng C; Carlsson NG
    Can J Microbiol; 2007 Apr; 53(4):488-95. PubMed ID: 17612603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin.
    Yu S; Cowieson A; Gilbert C; Plumstead P; Dalsgaard S
    J Anim Sci; 2012 Jun; 90(6):1824-32. PubMed ID: 22228039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phytic phosphorus and phytase activity in cereal-based infant formulas].
    Ojeda A; Villavicencio I; Linares Z
    Arch Latinoam Nutr; 2012 Dec; 62(4):370-4. PubMed ID: 24020257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of phytase-mediated iron release from cereal-based foods: a quantitative view.
    Nielsen AV; Tetens I; Meyer AS
    Nutrients; 2013 Aug; 5(8):3074-98. PubMed ID: 23917170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk.
    Tang AL; Wilcox G; Walker KZ; Shah NP; Ashton JF; Stojanovska L
    J Food Sci; 2010 Aug; 75(6):M373-6. PubMed ID: 20722939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Characteristics and Catalytic Mechanism of Bacillus β-Propeller Phytases.
    Balaban NP; Suleimanova AD; Valeeva LR; Shakirov EV; Sharipova MR
    Biochemistry (Mosc); 2016 Aug; 81(8):785-93. PubMed ID: 27677548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.