These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19138219)

  • 1. Quantitative imaging for discovery and assembly of the metabo-regulome.
    Okumoto S; Takanaga H; Frommer WB
    New Phytol; 2008; 180(2):271-295. PubMed ID: 19138219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.
    Hou BH; Takanaga H; Grossmann G; Chen LQ; Qu XQ; Jones AM; Lalonde S; Schweissgut O; Wiechert W; Frommer WB
    Nat Protoc; 2011 Oct; 6(11):1818-33. PubMed ID: 22036884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics.
    Niittylae T; Chaudhuri B; Sauer U; Frommer WB
    Methods Mol Biol; 2009; 553():355-72. PubMed ID: 19588116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants.
    Okumoto S
    Methods Mol Biol; 2014; 1083():55-64. PubMed ID: 24218210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast.
    Bermejo C; Haerizadeh F; Takanaga H; Chermak D; Frommer WB
    Nat Protoc; 2011 Oct; 6(11):1806-17. PubMed ID: 22036883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
    Mohsin M; Ahmad A; Iqbal M
    Biotechnol Lett; 2015 Oct; 37(10):1919-28. PubMed ID: 26184603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.
    Chaudhuri B; Hörmann F; Frommer WB
    J Exp Bot; 2011 Apr; 62(7):2411-7. PubMed ID: 21266495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of green fluorescent proteins and their variants in development of FRET-based sensors.
    Soleja N; Manzoor O; Khan I; Ahmad A; Mohsin M
    J Biosci; 2018 Sep; 43(4):763-784. PubMed ID: 30207321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells.
    Looger LL; Lalonde S; Frommer WB
    Plant Physiol; 2005 Jun; 138(2):555-7. PubMed ID: 15955913
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative imaging with fluorescent biosensors.
    Okumoto S; Jones A; Frommer WB
    Annu Rev Plant Biol; 2012; 63():663-706. PubMed ID: 22404462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and use of fluorescent nanosensors for metabolite imaging in living cells.
    Fehr M; Okumoto S; Deuschle K; Lager I; Looger LL; Persson J; Kozhukh L; Lalonde S; Frommer WB
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):287-90. PubMed ID: 15667328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants.
    Banerjee S; Garcia LR; Versaw WK
    Microsc Microanal; 2016 Apr; 22(2):300-10. PubMed ID: 26879593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species detection-approaches in plants: Insights into genetically encoded FRET-based sensors.
    Anjum NA; Amreen ; Tantray AY; Khan NA; Ahmad A
    J Biotechnol; 2020 Jan; 308():108-117. PubMed ID: 31836526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluxomics: mass spectrometry versus quantitative imaging.
    Wiechert W; Schweissgut O; Takanaga H; Frommer WB
    Curr Opin Plant Biol; 2007 Jun; 10(3):323-30. PubMed ID: 17481942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative imaging using genetically encoded sensors for small molecules in plants.
    Okumoto S
    Plant J; 2012 Apr; 70(1):108-17. PubMed ID: 22449046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shining light on signaling and metabolic networks by genetically encoded biosensors.
    Lalonde S; Ehrhardt DW; Frommer WB
    Curr Opin Plant Biol; 2005 Dec; 8(6):574-81. PubMed ID: 16188489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering.
    Deuschle K; Okumoto S; Fehr M; Looger LL; Kozhukh L; Frommer WB
    Protein Sci; 2005 Sep; 14(9):2304-14. PubMed ID: 16131659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.