These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19138506)

  • 1. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil.
    Raicevic S; Perovic V; Zouboulis AI
    Waste Manag; 2009 May; 29(5):1779-84. PubMed ID: 19138506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.
    Kumpiene J; Lagerkvist A; Maurice C
    Waste Manag; 2008; 28(1):215-25. PubMed ID: 17320367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.
    Raicevic S; Wright JV; Veljkovic V; Conca JL
    Sci Total Environ; 2006 Feb; 355(1-3):13-24. PubMed ID: 15885755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).
    Chaturvedi PK; Seth CS; Misra V
    Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing lead bioaccessibility in industrial and firing range soils with phosphate-based amendments.
    Moseley RA; Barnett MO; Stewart MA; Mehlhorn TL; Jardine PM; Ginder-Vogel M; Fendorf S
    J Environ Qual; 2008; 37(6):2116-24. PubMed ID: 18948465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification.
    Raicevic S; Kaludjerovic-Radoicic T; Zouboulis AI
    J Hazard Mater; 2005 Jan; 117(1):41-53. PubMed ID: 15621352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the removal of divalent cations by hydroxyapatite.
    Smiciklas I; Onjia A; Raicević S; Janaćković D; Mitrić M
    J Hazard Mater; 2008 Apr; 152(2):876-84. PubMed ID: 17764836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils.
    Ownby DR; Galvan KA; Lydy MJ
    Environ Pollut; 2005 Jul; 136(2):315-21. PubMed ID: 15840539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.
    Baker LR; Pierzynski GM; Hettiarachchi GM; Scheckel KG; Newville M
    J Environ Qual; 2012; 41(6):1865-73. PubMed ID: 23128743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of lead and zinc in scrubber residues from MSW combustion using soluble phosphates.
    Geysen D; Imbrechts K; Vandecasteele C; Jaspers M; Wauters G
    Waste Manag; 2004; 24(5):471-81. PubMed ID: 15120431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of lead, copper, and zinc retention by phosphate rock.
    Cao X; Ma LQ; Rhue DR; Appel CS
    Environ Pollut; 2004 Oct; 131(3):435-44. PubMed ID: 15261407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil.
    Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM
    J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test.
    Tang XY; Zhu YG; Chen SB; Tang LL; Chen XP
    Environ Int; 2004 Jun; 30(4):531-7. PubMed ID: 15031013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.
    Udovic M; Lestan D
    Chemosphere; 2009 Mar; 74(10):1367-73. PubMed ID: 19110294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.