These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1913855)

  • 1. The distribution and arrangement of microtubules in mammalian skeletal muscle fibers.
    Kano Y; Fujimaki N; Ishikawa H
    Cell Struct Funct; 1991 Jun; 16(3):251-61. PubMed ID: 1913855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specialized contacts between sarcolemma and sarcoplasmic reticulum at the ends of muscle fibers in the diaphragm of the rat.
    Andreev DP; Wassilev WA
    Cell Tissue Res; 1986; 243(2):415-20. PubMed ID: 3948240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning electron microscopy of tenotomized soleus muscles of the rat.
    Abou Salem EA; Saito K; Ishikawa H
    Arch Histol Cytol; 1993 Mar; 56(1):49-63. PubMed ID: 8499125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal structure of skeletal muscle: identification of an intricate exosarcomeric microtubule lattice in slow- and fast-twitch muscle fibers.
    Boudriau S; Vincent M; Côté CH; Rogers PA
    J Histochem Cytochem; 1993 Jul; 41(7):1013-21. PubMed ID: 8515044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ.
    Yuan S; Arnold W; Jorgensen AO
    J Cell Biol; 1990 Apr; 110(4):1187-98. PubMed ID: 2139033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of transverse tubule architecture in the middle and myotendinous junctional regions in developing rat skeletal muscle fibers.
    Yamashita S; McGrath KF; Yuki A; Tamaki H; Kasuga N; Takekura H
    J Muscle Res Cell Motil; 2007; 28(2-3):141-51. PubMed ID: 17610135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure of rat intrafusal muscle fibers. The equatorial region.
    Ovalle WK
    J Cell Biol; 1972 Feb; 52(2):382-96. PubMed ID: 4257999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine structure of rat intrafusal muscle fibers. The polar region.
    Ovalle WK
    J Cell Biol; 1971 Oct; 51(1):83-103. PubMed ID: 4329525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electron-microscopic studies on the three-dimensional structure of mitochondria in the mammalian red, white and intermediate muscle fibers.
    Ogata T; Yamasaki Y
    Cell Tissue Res; 1985; 241(2):251-6. PubMed ID: 4028126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring bands in fish skeletal muscle: reorienting the myofibrils and microtubule cytoskeleton within a single cell.
    Priester C; Braude JP; Morton LC; Kinsey ST; Watanabe WO; Dillaman RM
    J Morphol; 2012 Nov; 273(11):1246-56. PubMed ID: 22806937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers.
    Masuda T; Fujimaki N; Ozawa E; Ishikawa H
    J Cell Biol; 1992 Nov; 119(3):543-8. PubMed ID: 1400591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron-microscopic studies on the three-dimensional structure of sarcoplasmic reticulum in the mammalian red, white and intermediate muscle fibers.
    Ogata T; Yamasaki Y
    Cell Tissue Res; 1985; 242(3):461-7. PubMed ID: 4075372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development.
    Luff AR; Atwood HL
    J Cell Biol; 1971 Nov; 51(21):369-83. PubMed ID: 5112650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig.
    Eisenberg BR; Kuda AM
    J Ultrastruct Res; 1975 May; 51(2):176-87. PubMed ID: 1127796
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle.
    Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP
    J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural changes of myotendinous junctions in tenotomized soleus muscles of the rat.
    Abou Salem EA; Fujimaki N; Ishikawa H
    J Submicrosc Cytol Pathol; 1993 Apr; 25(2):181-91. PubMed ID: 8324723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of the myotendinous junction of lathyritic rat muscle with special reference to connectin, a muscle elastic protein.
    Maruyama K; Shimada Y
    Tissue Cell; 1978; 10(4):741-8. PubMed ID: 746544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuolation of muscle fibers near sarcolemmal breaks represents T-tubule dilatation secondary to enhanced sodium pump activity.
    Casademont J; Carpenter S; Karpati G
    J Neuropathol Exp Neurol; 1988 Nov; 47(6):618-28. PubMed ID: 2845004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the myotendinous junction and "terminal coupling" in the skeletal muscle of the lamprey, Lampetra japonica.
    Nakao T
    Anat Rec; 1975 Jul; 182(3):321-37. PubMed ID: 1155802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.