These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19138795)

  • 21. Patterning and detailed study of human hNT astrocytes on parylene-C/silicon dioxide substrates to the single cell level.
    Unsworth CP; Holloway H; Delivopoulos E; Murray AF; Simpson MC; Dickinson ME; Graham ES
    Biomaterials; 2011 Sep; 32(27):6541-50. PubMed ID: 21641029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First human hNT astrocytes patterned to single cell resolution on parylene-C/silicon dioxide substrates.
    Unsworth CP; Graham ES; Delivopoulos E; Murray AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3605-8. PubMed ID: 22255119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-chip parylene-C microstencil for simple-to-use patterning of proteins and cells on polydimethylsiloxane.
    Lee D; Yang S
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2658-68. PubMed ID: 23477911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating parylene-HT as a substrate for human cell patterning.
    Raos BJ; Graham ES; Murray AF; Simpson MC; Unsworth CP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():141-144. PubMed ID: 28268299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications.
    Lei Y; Liu Y; Wang W; Wu W; Li Z
    Lab Chip; 2011 Apr; 11(7):1385-8. PubMed ID: 21327252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of parylene derivatives for use as biomaterials for human astrocyte cell patterning.
    Raos BJ; Simpson MC; Doyle CS; Graham ES; Unsworth CP
    PLoS One; 2019; 14(6):e0218850. PubMed ID: 31237927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
    Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA
    Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein functionalized micro hydrogel features for cell-surface interaction.
    Bhatnagar P; Nixon AJ; Kim I; Kameoka J
    Biomed Microdevices; 2008 Aug; 10(4):567-71. PubMed ID: 18259869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature selective deposition of Parylene-C.
    Charlson EM; Charlson EJ; Sabeti R
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):202-6. PubMed ID: 1612624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance.
    Welle A; Horn S; Schimmelpfeng J; Kalka D
    J Neurosci Methods; 2005 Mar; 142(2):243-50. PubMed ID: 15698664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication.
    Saini G; Gates R; Asplund MC; Blair S; Attavar S; Linford MR
    Lab Chip; 2009 Jun; 9(12):1789-96. PubMed ID: 19495464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tensile film stress of parylene deposited on liquid.
    Nguyen BK; Matsumoto K; Shimoyama I
    Langmuir; 2010 Dec; 26(24):18771-5. PubMed ID: 21080655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformal coating using parylene polymers.
    Noordegraaf J
    Med Device Technol; 1997; 8(1):14-20. PubMed ID: 10167681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomolecule patterning on analytical devices: a microfabrication-compatible approach.
    Suárez G; Keegan N; Spoors JA; Ortiz P; Jackson RJ; Hedley J; Borrisé X; McNeil CJ
    Langmuir; 2010 Apr; 26(8):6071-7. PubMed ID: 20345112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of polystyrene microspheres and its application in cell micropatterning.
    Yap FL; Zhang Y
    Biomaterials; 2007 May; 28(14):2328-38. PubMed ID: 17306366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated device for patterning cells and selectively detaching.
    Wang J; Pei W; Yuan B; Guo K; Sun K; Sun H; Chen H
    Biomed Microdevices; 2012 Jun; 14(3):471-81. PubMed ID: 22327810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.
    Raos BJ; Unsworth CP; Costa JL; Rohde CA; Doyle CS; Delivopoulos E; Murray AF; Dickinson ME; Simpson MC; Graham ES; Bunting AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():862-5. PubMed ID: 24109824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates.
    Xiong X; Chen CL; Ryan P; Busnaina AA; Jung YJ; Dokmeci MR
    Nanotechnology; 2009 Jul; 20(29):295302. PubMed ID: 19567952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.
    Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM
    Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parylene flexible neural probes integrated with microfluidic channels.
    Takeuchi S; Ziegler D; Yoshida Y; Mabuchi K; Suzuki T
    Lab Chip; 2005 May; 5(5):519-23. PubMed ID: 15856088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.