BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19138797)

  • 1. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomaterials; 2009 Apr; 30(10):1954-61. PubMed ID: 19138797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains.
    Chen R; Yue Z; Eccleston ME; Williams S; Slater NK
    J Control Release; 2005 Nov; 108(1):63-72. PubMed ID: 16139914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of L-leucine graft content on aqueous solution behavior and membrane-lytic activity of a pH-responsive pseudopeptide.
    Chen R; Khormaee S; Eccleston ME; Slater NK
    Biomacromolecules; 2009 Sep; 10(9):2601-8. PubMed ID: 19642668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of aromatic side-chains on the aqueous properties of pH-sensitive poly(L-lysine iso-phthalamide) derivatives.
    Khormaee S; Chen R; Park JK; Slater NK
    J Biomater Sci Polym Ed; 2010; 21(12):1573-88. PubMed ID: 20537242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive pseudo-peptides for cell membrane disruption.
    Eccleston ME; Kuiper M; Gilchrist FM; Slater NK
    J Control Release; 2000 Nov; 69(2):297-307. PubMed ID: 11064136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution.
    Chen R; Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2008 Nov; 29(32):4333-40. PubMed ID: 18708250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models.
    Ho VH; Slater NK; Chen R
    Biomaterials; 2011 Apr; 32(11):2953-8. PubMed ID: 21272931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Membrane-Disruptive Activity via Hydrophobic Phenylalanine and Lysine Tethered to Poly(aspartic acid).
    Liu B; Zhang Q; Zhou F; Ren L; Zhao Y; Yuan X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14538-14547. PubMed ID: 30933470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery.
    Chen S; Wang S; Kopytynski M; Bachelet M; Chen R
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8021-8029. PubMed ID: 28225250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The design and synthesis of polymers for eukaryotic membrane disruption.
    Murthy N; Robichaud JR; Tirrell DA; Stayton PS; Hoffman AS
    J Control Release; 1999 Aug; 61(1-2):137-43. PubMed ID: 10469910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers.
    Kusonwiriyawong C; van de Wetering P; Hubbell JA; Merkle HP; Walter E
    Eur J Pharm Biopharm; 2003 Sep; 56(2):237-46. PubMed ID: 12957638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intracellular fate of an amphipathic pH-responsive polymer: Key characteristics towards drug delivery.
    Mercado SA; Orellana-Tavra C; Chen A; Slater NK
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1051-7. PubMed ID: 27612802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the pH-responsive properties of poly(L-lysine iso-phthalamide) grafted with a poly(ethylene glycol) analogue.
    Yue Z; Eccleston ME; Slater NK
    Biomaterials; 2005 Nov; 26(32):6357-66. PubMed ID: 15913772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.
    Nogueira DR; Mitjans M; Infante MR; Vinardell MP
    Acta Biomater; 2011 Jul; 7(7):2846-56. PubMed ID: 21421083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer.
    Duvall CL; Convertine AJ; Benoit DS; Hoffman AS; Stayton PS
    Mol Pharm; 2010 Apr; 7(2):468-76. PubMed ID: 19968323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of substituent grafting on the interaction of pH-responsive polymers with phospholipid monolayers.
    Zhang S; Nelson A; Coldrick Z; Chen R
    Langmuir; 2011 Jul; 27(13):8530-9. PubMed ID: 21657216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals.
    Richardson S; Ferruti P; Duncan R
    J Drug Target; 1999; 6(6):391-404. PubMed ID: 10937285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery.
    Henry SM; El-Sayed ME; Pirie CM; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Aug; 7(8):2407-14. PubMed ID: 16903689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery.
    Peeler DJ; Thai SN; Cheng Y; Horner PJ; Sellers DL; Pun SH
    Biomaterials; 2019 Feb; 192():235-244. PubMed ID: 30458359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.