These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19138814)

  • 41. Caffeine does not modulate inhibitory control.
    Tieges Z; Snel J; Kok A; Richard Ridderinkhof K
    Brain Cogn; 2009 Mar; 69(2):316-27. PubMed ID: 18782649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulating cognitive control through approach-avoidance motor actions.
    Koch S; Holland RW; van Knippenberg A
    Cognition; 2008 Oct; 109(1):133-42. PubMed ID: 18835601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The performance and observation of action shape future behaviour.
    Welsh TN; McDougall LM; Weeks DJ
    Brain Cogn; 2009 Nov; 71(2):64-71. PubMed ID: 19406547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cognitive performance after strenuous physical exercise.
    Hogervorst E; Riedel W; Jeukendrup A; Jolles J
    Percept Mot Skills; 1996 Oct; 83(2):479-88. PubMed ID: 8902021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time tracking of motor response activation and response competition in a Stroop task in young children: a lateralized readiness potential study.
    Szucs D; Soltész F; Bryce D; Whitebread D
    J Cogn Neurosci; 2009 Nov; 21(11):2195-206. PubMed ID: 19296726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cognitive control in adolescents with neurofibromatosis type 1.
    Rowbotham I; Pit-ten Cate IM; Sonuga-Barke EJ; Huijbregts SC
    Neuropsychology; 2009 Jan; 23(1):50-60. PubMed ID: 19210032
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of dual-tasking on postural control in subjects with nonspecific low back pain.
    Salavati M; Mazaheri M; Negahban H; Ebrahimi I; Jafari AH; Kazemnejad A; Parnianpour M
    Spine (Phila Pa 1976); 2009 Jun; 34(13):1415-21. PubMed ID: 19478663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heart rate variability and cognitive function: effects of physical effort.
    Luft CD; Takase E; Darby D
    Biol Psychol; 2009 Oct; 82(2):164-168. PubMed ID: 19632295
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Breakfast consumption and exercise interact to affect cognitive performance and mood later in the day. A randomized controlled trial.
    Veasey RC; Gonzalez JT; Kennedy DO; Haskell CF; Stevenson EJ
    Appetite; 2013 Sep; 68():38-44. PubMed ID: 23608698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motor and cognitive control in a normative sample of 7-year-olds.
    Roebers CM; Kauer M
    Dev Sci; 2009 Jan; 12(1):175-81. PubMed ID: 19120425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exercise improves reaction time without compromising accuracy in a novel easy-to-administer tablet-based cognitive task.
    Rattray B; Smee D
    J Sci Med Sport; 2013 Nov; 16(6):567-70. PubMed ID: 23337198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective effects of physical exercise on choice reaction processes.
    Arcelin R; Delignieres D; Brisswalter J
    Percept Mot Skills; 1998 Aug; 87(1):175-85. PubMed ID: 9760644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cognitive deficits and biases for food and body in bulimia: investigation using an affective shifting task.
    Mobbs O; Van der Linden M; d'Acremont M; Perroud A
    Eat Behav; 2008 Dec; 9(4):455-61. PubMed ID: 18928909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation.
    McMorris T; Hale BJ
    Brain Cogn; 2012 Dec; 80(3):338-51. PubMed ID: 23064033
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development of a high intensity dance performance fitness test.
    Redding E; Weller P; Ehrenberg S; Irvine S; Quin E; Rafferty S; Wyon M; Cox C
    J Dance Med Sci; 2009; 13(1):3-9. PubMed ID: 19416609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control over speeded actions: a common processing locus for micro- and macro-trade-offs?
    Jentzsch I; Leuthold H
    Q J Exp Psychol (Hove); 2006 Aug; 59(8):1329-37. PubMed ID: 16846963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Moderate Intensity Cycling Combined with Cognitive Dual-task Improves Selective Attention.
    Kunzler MR; Carpes FP
    Int J Sports Med; 2022 Jun; 43(6):545-552. PubMed ID: 34729731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Walking changes the dynamics of cognitive estimates of time intervals.
    Kiefer AW; Riley MA; Shockley K; Villard S; Van Orden GC
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1532-41. PubMed ID: 19803654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.