These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19139070)

  • 1. Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases.
    Ryu GM; Song P; Kim KW; Oh KS; Park KJ; Kim JH
    Nucleic Acids Res; 2009 Mar; 37(4):1297-307. PubMed ID: 19139070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Horng JT
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W226-9. PubMed ID: 15980458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship.
    Jung I; Matsuyama A; Yoshida M; Kim D
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S10. PubMed ID: 20122181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPS: a comprehensive www server for phosphorylation sites prediction.
    Xue Y; Zhou F; Zhu M; Ahmed K; Chen G; Yao X
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W184-7. PubMed ID: 15980451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of kinase-specific phosphorylation sites through an integrative model of protein context and sequence.
    Patrick R; Horin C; Kobe B; Cao KA; Bodén M
    Biochim Biophys Acta; 2016 Nov; 1864(11):1599-608. PubMed ID: 27507704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line liquid chromatography electron capture dissociation for the characterization of phosphorylation sites in proteins.
    Sweet SM; Cooper HJ
    Methods Mol Biol; 2009; 527():191-9, x. PubMed ID: 19241014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.
    Ahmad I; Mehmood A; Khurshid A; Qazi WM; Hoessli DC; Walker-Nasir E; Shakoori AR;
    J Cell Biochem; 2009 Sep; 108(1):64-74. PubMed ID: 19544398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospho.ELM: a database of phosphorylation sites--update 2008.
    Diella F; Gould CM; Chica C; Via A; Gibson TJ
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D240-4. PubMed ID: 17962309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites.
    Karabulut NP; Frishman D
    PLoS One; 2016; 11(6):e0157896. PubMed ID: 27332813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of protein phosphorylation across 18 fungal species.
    Studer RA; Rodriguez-Mias RA; Haas KM; Hsu JI; Viéitez C; Solé C; Swaney DL; Stanford LB; Liachko I; Böttcher R; Dunham MJ; de Nadal E; Posas F; Beltrao P; Villén J
    Science; 2016 Oct; 354(6309):229-232. PubMed ID: 27738172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a conserved motif required for mTOR signaling.
    Schalm SS; Blenis J
    Curr Biol; 2002 Apr; 12(8):632-9. PubMed ID: 11967149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Phosphorylation Dynamics: Unexplored Because of Current Methodological Limitations: Dynamics of Processive Phosphorylation.
    Robichon A
    Bioessays; 2020 Apr; 42(4):e1900149. PubMed ID: 32103519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins.
    Wang X; Beugnet A; Murakami M; Yamanaka S; Proud CG
    Mol Cell Biol; 2005 Apr; 25(7):2558-72. PubMed ID: 15767663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant protein kinases and phosphoproteins in amyotrophic lateral sclerosis.
    Krieger C; Hu JH; Pelech S
    Trends Pharmacol Sci; 2003 Oct; 24(10):535-41. PubMed ID: 14559406
    [No Abstract]   [Full Text] [Related]  

  • 18. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC.
    Khan YD; Rasool N; Hussain W; Khan SA; Chou KC
    Anal Biochem; 2018 Jun; 550():109-116. PubMed ID: 29704476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of kinase-oriented phospho-signalling pathways.
    Amano M; Nishioka T; Tsuboi D; Kuroda K; Funahashi Y; Yamahashi Y; Kaibuchi K
    J Biochem; 2019 Apr; 165(4):301-307. PubMed ID: 30590682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of a protein kinase whose phosphorylation is regulated by genetic adhesion during Chlamydomonas fertilization.
    Kurvari V; Zhang Y; Luo Y; Snell WJ
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):39-43. PubMed ID: 8552645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.