BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19139476)

  • 1. Pharmacogenomics of warfarin: uncovering a piece of the warfarin mystery.
    Gulseth MP; Grice GR; Dager WE
    Am J Health Syst Pharm; 2009 Jan; 66(2):123-33. PubMed ID: 19139476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study.
    Carlquist JF; Horne BD; Muhlestein JB; Lappé DL; Whiting BM; Kolek MJ; Clarke JL; James BC; Anderson JL
    J Thromb Thrombolysis; 2006 Dec; 22(3):191-7. PubMed ID: 17111199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - rationale and perspectives.
    Yin T; Miyata T
    Thromb Res; 2007; 120(1):1-10. PubMed ID: 17161452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VKORC1 and CYP2C9 genotypes are predictors of warfarin-related outcomes in children.
    Shaw K; Amstutz U; Hildebrand C; Rassekh SR; Hosking M; Neville K; Leeder JS; Hayden MR; Ross CJ; Carleton BC
    Pediatr Blood Cancer; 2014 Jun; 61(6):1055-62. PubMed ID: 24474498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warfarin pharmacogenomics in children.
    Vear SI; Stein CM; Ho RH
    Pediatr Blood Cancer; 2013 Sep; 60(9):1402-7. PubMed ID: 23682017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients.
    Miao L; Yang J; Huang C; Shen Z
    Eur J Clin Pharmacol; 2007 Dec; 63(12):1135-41. PubMed ID: 17899045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype.
    Voora D; Eby C; Linder MW; Milligan PE; Bukaveckas BL; McLeod HL; Maloney W; Clohisy J; Burnett RS; Grosso L; Gatchel SK; Gage BF
    Thromb Haemost; 2005 Apr; 93(4):700-5. PubMed ID: 15841315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical relevance of VKORC1 (G-1639A and C1173T) and CYP2C9*3 among patients on warfarin.
    Teh LK; Langmia IM; Fazleen Haslinda MH; Ngow HA; Roziah MJ; Harun R; Zakaria ZA; Salleh MZ
    J Clin Pharm Ther; 2012 Apr; 37(2):232-6. PubMed ID: 21507031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Possible application of pharmacogenomics to warfarin therapy].
    Murata M
    Rinsho Byori; 2011 Jun; 59(6):594-7. PubMed ID: 21815482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and comparison of a warfarin-dosing algorithm for Korean patients with atrial fibrillation.
    Cho HJ; On YK; Bang OY; Kim JW; Huh W; Ko JW; Kim JS; Lee SY
    Clin Ther; 2011 Oct; 33(10):1371-80. PubMed ID: 21981797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Warfarin resistance and related pharmacogenetic information].
    Takahashi H
    Brain Nerve; 2008 Nov; 60(11):1365-71. PubMed ID: 19069171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations.
    Wu AH; Wang P; Smith A; Haller C; Drake K; Linder M; Valdes R
    Pharmacogenomics; 2008 Feb; 9(2):169-78. PubMed ID: 18370846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose.
    King CR; Porche-Sorbet RM; Gage BF; Ridker PM; Renaud Y; Phillips MS; Eby C
    Am J Clin Pathol; 2008 Jun; 129(6):876-83. PubMed ID: 18480003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warfarin therapy: influence of pharmacogenetic and environmental factors on the anticoagulant response to warfarin.
    Siguret V; Pautas E; Gouin-Thibault I
    Vitam Horm; 2008; 78():247-64. PubMed ID: 18374198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impact of CYP2C9 and VKORC1 polymorphism on warfarin response during initiation of therapy].
    Liu Y; Zhong SL; Tan HH; Yang M; Fei HW; Yu XY; Lin SG
    Zhonghua Xin Xue Guan Bing Za Zhi; 2011 Oct; 39(10):929-35. PubMed ID: 22321278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of warfarin pharmacogenetic testing in clinical practice.
    Tan GM; Wu E; Lam YY; Yan BP
    Pharmacogenomics; 2010 Mar; 11(3):439-48. PubMed ID: 20402581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients.
    Kimura R; Miyashita K; Kokubo Y; Akaiwa Y; Otsubo R; Nagatsuka K; Otsuki T; Okayama A; Minematsu K; Naritomi H; Honda S; Tomoike H; Miyata T
    Thromb Res; 2007; 120(2):181-6. PubMed ID: 17049586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran.
    Namazi S; Azarpira N; Hendijani F; Khorshid MB; Vessal G; Mehdipour AR
    Clin Ther; 2010 Jun; 32(6):1050-60. PubMed ID: 20637959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of CYP2C9 and vitamin k oxide reductase complex (VKORC)1 polymorphisms on time to determine the warfarin maintenance dose.
    Aomori T; Obayashi K; Fujita Y; Araki T; Nakamura K; Nakamura T; Kurabayashi M; Yamamoto K
    Pharmazie; 2011 Mar; 66(3):222-5. PubMed ID: 21553655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorphisms in VKORC1 have more impact than CYP2C9 polymorphisms on early warfarin International Normalized Ratio control and bleeding rates.
    Lund K; Gaffney D; Spooner R; Etherington AM; Tansey P; Tait RC
    Br J Haematol; 2012 Jul; 158(2):256-261. PubMed ID: 22571356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.