These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 19139663)

  • 21. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs.
    Gruber HE; Ingram JA; Norton HJ; Hanley EN
    Spine (Phila Pa 1976); 2007 Feb; 32(3):321-7. PubMed ID: 17268263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DR5 and DcR2 are expressed in human lumbar intervertebral discs.
    Chen B; Ma B; Yang S; Xing X; Gu R; Hu Y
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E677-81. PubMed ID: 19730199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs.
    Ha KY; Koh IJ; Kirpalani PA; Kim YY; Cho YK; Khang GS; Han CW
    Spine (Phila Pa 1976); 2006 May; 31(12):1309-13. PubMed ID: 16721291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc.
    Risbud MV; Guttapalli A; Tsai TT; Lee JY; Danielson KG; Vaccaro AR; Albert TJ; Gazit Z; Gazit D; Shapiro IM
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2537-44. PubMed ID: 17978651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Intervertebral disc degeneration model and the rule of migration associated with chondrocytes in the nucleus pulposus in rat cervical disc].
    Wang WM; Jin DD; Lu JM; Wang BJ
    Zhonghua Yi Xue Za Zhi; 2007 Mar; 87(9):622-6. PubMed ID: 17550734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The occurrence and regional distribution of DR4 on herniated disc cells: a potential apoptosis pathway in lumbar intervertebral disc.
    Zhang L; Niu T; Yang SY; Lu Z; Chen B
    Spine (Phila Pa 1976); 2008 Feb; 33(4):422-7. PubMed ID: 18277875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro hyperextension injuries in the human cadaveric cervical spine.
    Shea M; Wittenberg RH; Edwards WT; White AA; Hayes WC
    J Orthop Res; 1992 Nov; 10(6):911-6. PubMed ID: 1403306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration.
    Przybyla A; Pollintine P; Bedzinski R; Adams MA
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1013-9. PubMed ID: 16956702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biologic response of the intervertebral disc to static and dynamic compression in vitro.
    Wang DL; Jiang SD; Dai LY
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2521-8. PubMed ID: 17978649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology of young and old cervical spine intervertebral disc tissues.
    Kumaresan S; Yoganandan N; Pintar FA; Macias M; Cusick JF
    Biomed Sci Instrum; 2000; 36():141-6. PubMed ID: 10834223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased cell senescence is associated with decreased cell proliferation in vivo in the degenerating human annulus.
    Gruber HE; Ingram JA; Davis DE; Hanley EN
    Spine J; 2009 Mar; 9(3):210-5. PubMed ID: 18440281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The relationship between cartilage end-plate calcification and disc degeneration: an experimental study].
    Peng B; Shi Q; Shen P; Wang Y; Jia L
    Zhonghua Wai Ke Za Zhi; 1999 Oct; 37(10):613-6. PubMed ID: 11829907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmin-matrix metalloproteinase cascades in spinal response to an experimental disc lesion in pig.
    Salo J; Mackiewicz Z; Indahl A; Konttinen YT; Holm AK; Sukura A; Holm S
    Spine (Phila Pa 1976); 2008 Apr; 33(8):839-44. PubMed ID: 18404101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study.
    Peng B; Hou S; Shi Q; Jia L
    Chin Med J (Engl); 2001 Mar; 114(3):308-12. PubMed ID: 11780320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An anatomic basis for spinal instability: a porcine trauma model.
    Oxland TR; Panjabi MM; Southern EP; Duranceau JS
    J Orthop Res; 1991 May; 9(3):452-62. PubMed ID: 2010850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse.
    Yang F; Leung VY; Luk KD; Chan D; Cheung KM
    J Pathol; 2009 May; 218(1):113-21. PubMed ID: 19288580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal deposits in the human intervertebral disc: implications for disc degeneration.
    Gruber HE; Norton HJ; Sun Y; Hanley EN
    Spine J; 2007; 7(4):444-50. PubMed ID: 17630142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative magnetic resonance imaging of experimentally injured porcine intervertebral disc.
    Niinimäki J; Ruohonen J; Silfverhuth M; Lappalainen A; Kääpä E; Tervonen O
    Acta Radiol; 2007 Jul; 48(6):643-9. PubMed ID: 17611872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.