These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 19139763)

  • 21. Exploring a minimal two-component p53 model.
    Sun T; Yuan R; Xu W; Zhu F; Shen P
    Phys Biol; 2010 Sep; 7(3):036008. PubMed ID: 20834108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
    Schaff JC; Gao F; Li Y; Novak IL; Slepchenko BM
    PLoS Comput Biol; 2016 Dec; 12(12):e1005236. PubMed ID: 27959915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical descriptions of biochemical networks: stability, stochasticity, evolution.
    Rosenfeld S
    Prog Biophys Mol Biol; 2011 Aug; 106(2):400-9. PubMed ID: 21419158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.
    Twycross J; Band LR; Bennett MJ; King JR; Krasnogor N
    BMC Syst Biol; 2010 Mar; 4():34. PubMed ID: 20346112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On p53 revival using system oriented drug dosage design.
    Haseeb M; Azam S; Bhatti AI; Azam R; Ullah M; Fazal S
    J Theor Biol; 2017 Feb; 415():53-57. PubMed ID: 27979498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation methods for heterogeneous cell population models in systems biology.
    Waldherr S
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30381346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of modelling approaches demonstrated for p16-mediated signalling pathway in higher eukaryotes.
    Akçay Nİ; Bashirov R
    Biosystems; 2021 Dec; 210():104562. PubMed ID: 34662677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rule-based modelling and simulation of biochemical systems with molecular finite automata.
    Yang J; Meng X; Hlavacek WS
    IET Syst Biol; 2010 Nov; 4(6):453-66. PubMed ID: 21073243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays.
    Ramalingam S; Honkanen P; Young L; Shimura T; Austin J; Steeg PS; Nishizuka S
    Cancer Res; 2007 Jul; 67(13):6247-52. PubMed ID: 17616682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback.
    Wagner J; Ma L; Rice JJ; Hu W; Levine AJ; Stolovitzky GA
    Syst Biol (Stevenage); 2005 Sep; 152(3):109-18. PubMed ID: 16986275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady-State-Preserving Simulation of Genetic Regulatory Systems.
    Zhang R; Ehigie JO; Hou X; You X; Yuan C
    Comput Math Methods Med; 2017; 2017():2729683. PubMed ID: 28203268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling.
    Ogunnaike BA
    J R Soc Interface; 2006 Feb; 3(6):175-84. PubMed ID: 16849229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.
    Zimmer C; Sahle S
    IET Syst Biol; 2015 Oct; 9(5):181-92. PubMed ID: 26405142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological mechanisms revealed by a mathematical model for p53-Mdm2 core regulation.
    Yang Y; Lee KS; Xiang C; Lin H
    IET Syst Biol; 2009 Jul; 3(4):229-38. PubMed ID: 19640162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study.
    Lee HJ; Srinivasan D; Coomber D; Lane DP; Verma CS
    Cell Cycle; 2007 Nov; 6(21):2604-11. PubMed ID: 17957142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Splitting strategy for simulating genetic regulatory networks.
    You X; Liu X; Musa IH
    Comput Math Methods Med; 2014; 2014():683235. PubMed ID: 24624223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.
    Hussain F; Jha SK; Jha S; Langmead CJ
    Int J Bioinform Res Appl; 2014; 10(4-5):519-39. PubMed ID: 24989866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extraction of stochastic dynamics from time series.
    Petelczyc M; Żebrowski JJ; Gac JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011114. PubMed ID: 23005375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic modeling and network approaches for omics time course data: overview of computational approaches and applications.
    Liang Y; Kelemen A
    Brief Bioinform; 2018 Sep; 19(5):1051-1068. PubMed ID: 28430854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities.
    Song YM; Hong H; Kim JK
    PLoS Comput Biol; 2021 Oct; 17(10):e1008952. PubMed ID: 34662330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.