These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quinone toxicity in hepatocytes without oxidative stress. Rossi L; Moore GA; Orrenius S; O'Brien PJ Arch Biochem Biophys; 1986 Nov; 251(1):25-35. PubMed ID: 3789732 [TBL] [Abstract][Full Text] [Related]
3. Diethyldithiocarbamate (DEDC) enhances quinone mediated oxidative stress cytotoxicity in isolated hepatocytes by forming toxic quinone conjugates. Lauriault VV; Silva JM; O'Brien PJ Drug Metabol Drug Interact; 1989; 7(1):1-15. PubMed ID: 2561273 [TBL] [Abstract][Full Text] [Related]
4. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Gant TW; Rao DN; Mason RP; Cohen GM Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188 [TBL] [Abstract][Full Text] [Related]
5. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. Ludewig G; Dogra S; Glatt H Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044 [TBL] [Abstract][Full Text] [Related]
6. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Inbaraj JJ; Chignell CF Chem Res Toxicol; 2004 Jan; 17(1):55-62. PubMed ID: 14727919 [TBL] [Abstract][Full Text] [Related]
7. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets. Seung SA; Lee JY; Lee MY; Park JS; Chung JH Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514 [TBL] [Abstract][Full Text] [Related]
8. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines. Powis G; Hodnett EM; Santone KS; See KL; Melder DC Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421 [TBL] [Abstract][Full Text] [Related]
9. Bioreductive activation of quinones: a mixed blessing. Koster AS Pharm Weekbl Sci; 1991 Jun; 13(3):123-6. PubMed ID: 1923701 [TBL] [Abstract][Full Text] [Related]
10. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells. Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899 [TBL] [Abstract][Full Text] [Related]
11. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones. Thor H; Mirabelli F; Salis A; Cohen GM; Bellomo G; Orrenius S Arch Biochem Biophys; 1988 Nov; 266(2):397-407. PubMed ID: 3190234 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxic effects of polychlorinated biphenyl hydroquinone metabolites in rat hepatocytes. Chan K; Lehmler HJ; Sivagnanam M; Feng CY; Robertson L; O'Brien PJ J Appl Toxicol; 2010 Mar; 30(2):163-71. PubMed ID: 19830680 [TBL] [Abstract][Full Text] [Related]
13. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287 [TBL] [Abstract][Full Text] [Related]
14. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Segura-Aguilar J; Lind C Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982 [TBL] [Abstract][Full Text] [Related]
15. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells. Siraki AG; Chan TS; O'Brien PJ Toxicol Sci; 2004 Sep; 81(1):148-59. PubMed ID: 15178806 [TBL] [Abstract][Full Text] [Related]
16. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Bolton JL; Dunlap T Chem Res Toxicol; 2017 Jan; 30(1):13-37. PubMed ID: 27617882 [TBL] [Abstract][Full Text] [Related]
17. Activation of hepatocyte protein kinase C by redox-cycling quinones. Kass GE; Duddy SK; Orrenius S Biochem J; 1989 Jun; 260(2):499-507. PubMed ID: 2764885 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343 [TBL] [Abstract][Full Text] [Related]
19. Sulfhydryl binding and topoisomerase inhibition by PCB metabolites. Srinivasan A; Robertson LW; Ludewig G Chem Res Toxicol; 2002 Apr; 15(4):497-505. PubMed ID: 11952335 [TBL] [Abstract][Full Text] [Related]