These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 19139857)

  • 1. Visuo-motor coordination and internal models for object interception.
    Zago M; McIntyre J; Senot P; Lacquaniti F
    Exp Brain Res; 2009 Feb; 192(4):571-604. PubMed ID: 19139857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.
    Zago M; Lacquaniti F
    J Neural Eng; 2005 Sep; 2(3):S198-208. PubMed ID: 16135884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body orientation contributes to modelling the effects of gravity for target interception in humans.
    La Scaleia B; Lacquaniti F; Zago M
    J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurophysiology of perceptual and motor aspects of interception.
    Merchant H; Georgopoulos AP
    J Neurophysiol; 2006 Jan; 95(1):1-13. PubMed ID: 16339504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal interpolation is accomplished by binocular form and motion mechanisms.
    Kandil FI; Lappe M
    PLoS One; 2007 Feb; 2(2):e264. PubMed ID: 17327923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral and neurophysiological aspects of target interception.
    Merchant H; Zarco W; Prado L; Pérez O
    Adv Exp Med Biol; 2009; 629():201-20. PubMed ID: 19227501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.
    Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The visual control of reaching and grasping: binocular disparity and motion parallax.
    Watt SJ; Bradshaw MF
    J Exp Psychol Hum Percept Perform; 2003 Apr; 29(2):404-15. PubMed ID: 12760624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating visual cues for motor control: a matter of time.
    Greenwald HS; Knill DC; Saunders JA
    Vision Res; 2005 Jul; 45(15):1975-89. PubMed ID: 15820516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.
    Senot P; Zago M; Lacquaniti F; McIntyre J
    J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal models and prediction of visual gravitational motion.
    Zago M; McIntyre J; Senot P; Lacquaniti F
    Vision Res; 2008 Jun; 48(14):1532-8. PubMed ID: 18499213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive elements in ocular interception and tracking of a moving target by untrained cats.
    Klam F; Petit J; Grantyn A; Berthoz A
    Exp Brain Res; 2001 Jul; 139(2):233-47. PubMed ID: 11497066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive strategies in interception tasks: differences between eye and hand movements.
    Eggert T; Rivas F; Straube A
    Exp Brain Res; 2005 Jan; 160(4):433-49. PubMed ID: 15551090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interocular velocity cues elicit vergence eye movements in mice.
    Choi V; Priebe NJ
    J Neurophysiol; 2020 Aug; 124(2):623-633. PubMed ID: 32727261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Monocular Spatial Cues on Vergence Eye Movements in Monocular and Binocular Viewing of 3-D and 2-D Stimuli.
    Batvinionak AA; Gracheva MA; Bolshakov AS; Rozhkova GI
    Perception; 2015; 44(8-9):1077-84. PubMed ID: 26562921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target.
    Mijatović A; La Scaleia B; Mercuri N; Lacquaniti F; Zago M
    Exp Brain Res; 2014 Dec; 232(12):3803-11. PubMed ID: 25142150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation.
    Bosco G; Carrozzo M; Lacquaniti F
    J Neurosci; 2008 Nov; 28(46):12071-84. PubMed ID: 19005072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.