These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19139867)

  • 1. Minimally assistive robot training for proprioception enhancement.
    Casadio M; Morasso P; Sanguineti V; Giannoni P
    Exp Brain Res; 2009 Apr; 194(2):219-31. PubMed ID: 19139867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance.
    Sanguineti V; Casadio M; Vergaro E; Squeri V; Giannoni P; Morasso PG
    Stud Health Technol Inform; 2009; 145():126-42. PubMed ID: 19592791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-adaptive robot training of stroke survivors for continuous tracking movements.
    Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V
    J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    Neurocase; 2016; 22(2):191-200. PubMed ID: 26565132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Index to Describe Slacking During Robot Therapy.
    Piovesan D
    Adv Exp Med Biol; 2016; 957():351-365. PubMed ID: 28035575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke.
    Vahdat S; Darainy M; Thiel A; Ostry DJ
    Neurorehabil Neural Repair; 2019 Jan; 33(1):70-81. PubMed ID: 30595082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical correlates of proprioceptive impairments following acute stroke: a case series.
    Kenzie JM; Semrau JA; Findlater SE; Herter TM; Hill MD; Scott SH; Dukelow SP
    J Neurol Sci; 2014 Jul; 342(1-2):52-61. PubMed ID: 24819922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-aided assessment and associated brain lesions of impaired ankle proprioception in chronic stroke.
    Huang Q; Elangovan N; Zhang M; Van de Winckel A; Konczak J
    J Neuroeng Rehabil; 2024 Jun; 21(1):109. PubMed ID: 38915064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Correlates of Passive Position Finger Sense After Stroke.
    Ingemanson ML; Rowe JR; Chan V; Riley J; Wolbrecht ET; Reinkensmeyer DJ; Cramer SC
    Neurorehabil Neural Repair; 2019 Sep; 33(9):740-750. PubMed ID: 31319755
    [No Abstract]   [Full Text] [Related]  

  • 13. A composite robotic-based measure of upper limb proprioception.
    Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proprioception and motor performance after stroke: An examination of diffusion properties in sensory and motor pathways.
    Findlater SE; Mazerolle EL; Pike GB; Dukelow SP
    Hum Brain Mapp; 2019 Jul; 40(10):2995-3009. PubMed ID: 30891844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm.
    Mrotek LA; Bengtson M; Stoeckmann T; Botzer L; Ghez CP; McGuire J; Scheidt RA
    J Neuroeng Rehabil; 2017 Jun; 14(1):64. PubMed ID: 28659156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision does not always help stroke survivors compensate for impaired limb position sense.
    Herter TM; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2019 Oct; 16(1):129. PubMed ID: 31666135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation.
    Findlater SE; Dukelow SP
    J Mot Behav; 2017; 49(1):27-34. PubMed ID: 27726645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training stroke patients with continuous tracking movements: evaluating the improvement of voluntary control.
    Casadio M; Giannoni P; Morasso P; Sanguineti V; Squeri V; Vergaro E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5961-4. PubMed ID: 19964883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prevalence, distribution, and functional importance of lower limb somatosensory impairments in chronic stroke survivors: a cross sectional observational study.
    Gorst T; Rogers A; Morrison SC; Cramp M; Paton J; Freeman J; Marsden J
    Disabil Rehabil; 2019 Oct; 41(20):2443-2450. PubMed ID: 29726732
    [No Abstract]   [Full Text] [Related]  

  • 20. A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients.
    Casadio M; Giannoni P; Morasso P; Sanguineti V
    Clin Rehabil; 2009 Mar; 23(3):217-28. PubMed ID: 19218297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.