These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19140126)

  • 41. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.
    Castro DP; Figueiredo MB; Genta FA; Ribeiro IM; Tomassini TC; Azambuja P; Garcia ES
    J Insect Physiol; 2009 Jun; 55(6):532-7. PubMed ID: 19232405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eicosanoid-mediated immunity in insects.
    Kim Y; Ahmed S; Stanley D; An C
    Dev Comp Immunol; 2018 Jun; 83():130-143. PubMed ID: 29225005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serotonin- and eicosanoid-dependent rapid hemocyte aggregation in the hemolymph is the first step in nodule formation in Bombyx mori larvae.
    Otuka H; Sato R
    J Insect Physiol; 2023 Mar; 145():104486. PubMed ID: 36669557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Altered immunity in crowded Mythimna separata is mediated by octopamine and dopamine.
    Kong H; Dong C; Tian Z; Mao N; Wang C; Cheng Y; Zhang L; Jiang X; Luo L
    Sci Rep; 2018 Feb; 8(1):3215. PubMed ID: 29453438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantria dispar to nucleopolyhedrovirus LdMNPV.
    Stanley D; Shapiro M
    J Invertebr Pathol; 2007 Jun; 95(2):119-24. PubMed ID: 17386933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomya megacephala.
    Zhao F; Stanley D; Wang Y; Zhu F; Lei CL
    J Insect Physiol; 2009 Mar; 55(3):192-6. PubMed ID: 19071132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of a hypertrehalosemic factor in Spodoptera exigua.
    Park Y; Kim Y
    Arch Insect Biochem Physiol; 2017 May; 95(1):. PubMed ID: 28440594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae.
    Park Y; Kim Y
    J Insect Physiol; 2000 Nov; 46(11):1469-1476. PubMed ID: 10891575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The first report of prostacyclin and its physiological roles in insects.
    Ahmed S; Al Baki MA; Lee J; Seo DY; Lee D; Kim Y
    Gen Comp Endocrinol; 2021 Jan; 301():113659. PubMed ID: 33166533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial induced hemocytic immune reactions in chilopods.
    Nevermann L; Kaiser HE; Xylander WE
    In Vivo; 1996; 10(2):161-7. PubMed ID: 8744795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth.
    Park Y; Kumar S; Kanumuri R; Stanley D; Kim Y
    Insect Biochem Mol Biol; 2015 Nov; 66():13-23. PubMed ID: 26429672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for the lipoxygenase pathway.
    Lord JC; Anderson S; Stanley DW
    Arch Insect Biochem Physiol; 2002 Sep; 51(1):46-54. PubMed ID: 12210960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apolipoprotein D3 and LOX product play a role in immune-priming of a lepidopteran insect, Spodoptera exigua.
    Haraji S; Talaei-Hassanloui R; Ahmed S; Jin G; Lee D; Kim Y
    Dev Comp Immunol; 2024 Sep; 158():105198. PubMed ID: 38795942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EpOMEs act as immune suppressors in a lepidopteran insect, Spodoptera exigua.
    Vatanparast M; Ahmed S; Lee DH; Hwang SH; Hammock B; Kim Y
    Sci Rep; 2020 Nov; 10(1):20183. PubMed ID: 33214688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua.
    Park Y; Kim Y
    J Exp Biol; 2013 Nov; 216(Pt 22):4196-203. PubMed ID: 23948473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis.
    Figueiredo MB; Castro DP; S Nogueira NF; Garcia ES; Azambuja P
    J Insect Physiol; 2006 Jul; 52(7):711-6. PubMed ID: 16759667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antagonistic effect of juvenile hormone on hemocyte-spreading behavior of Spodoptera exigua in response to an insect cytokine and its putative membrane action.
    Kim Y; Jung S; Madanagopal N
    J Insect Physiol; 2008 Jun; 54(6):909-15. PubMed ID: 18485359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase A
    Sadekuzzaman M; Kim Y
    J Invertebr Pathol; 2017 Oct; 149():97-105. PubMed ID: 28803982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prostaglandin mediates down-regulation of phenoloxidase activation of Spodoptera exigua via plasmatocyte-spreading peptide-binding protein.
    Park J; Kim Y
    Arch Insect Biochem Physiol; 2014 Apr; 85(4):234-47. PubMed ID: 24615993
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A prophylactic role of a secretory PLA
    Vatanparast M; Ahmed S; Sajjadian SM; Kim Y
    Dev Comp Immunol; 2019 Jun; 95():108-117. PubMed ID: 30776421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.