These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19140289)

  • 1. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte.
    Holowacz T; Elinson RP
    Development; 1993 Sep; 119(1):277-85. PubMed ID: 8275862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.
    Kageura H
    Development; 1997 Apr; 124(8):1543-51. PubMed ID: 9108370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs.
    Kikkawa M; Takano K; Shinagawa A
    Development; 1996 Dec; 122(12):3687-96. PubMed ID: 9012490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs.
    Holowacz T; Elinson RP
    Development; 1995 Sep; 121(9):2789-98. PubMed ID: 7555707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser.
    Darras S; Marikawa Y; Elinson RP; Lemaire P
    Development; 1997 Nov; 124(21):4275-86. PubMed ID: 9334276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation.
    Miller JR; Rowning BA; Larabell CA; Yang-Snyder JA; Bates RL; Moon RT
    J Cell Biol; 1999 Jul; 146(2):427-37. PubMed ID: 10427095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis.
    Yuge M; Kobayakawa Y; Fujisue M; Yamana K
    Development; 1990 Dec; 110(4):1051-6. PubMed ID: 2100253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of dorsal-forming activity in precleavage embryos of the Japanese newt, Cynops pyrrhogaster: effects of deletion of vegetal cytoplasm, UV irradiation, and lithium treatment.
    Doi JY; Niigaki H; Sone K; Takabatake T; Takeshima K; Yasui K; Tosuji H; Tsukahara J; Sakai M
    Dev Biol; 2000 Jul; 223(1):154-68. PubMed ID: 10864468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of hyperdorsal larvae by exposing uncleaved Xenopus eggs to a centrifugal force directed from the animal pole to the vegetal pole.
    Takano K; Kikkawa M; Shinagawa A
    Dev Growth Differ; 1996 Oct; 38(5):537-547. PubMed ID: 37281720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle.
    Sakai M
    Development; 1996 Jul; 122(7):2207-14. PubMed ID: 8681801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi.
    Nishida H
    Development; 1996 Apr; 122(4):1271-9. PubMed ID: 8620854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
    Mei W; Jin Z; Lai F; Schwend T; Houston DW; King ML; Yang J
    Development; 2013 Jun; 140(11):2334-44. PubMed ID: 23615278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early cellular interactions promote embryonic axis formation in Xenopus laevis.
    Gimlich RL; Gerhart JC
    Dev Biol; 1984 Jul; 104(1):117-30. PubMed ID: 6203792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional specification during embryogenesis in the inarticulate brachiopod Glottidia.
    Freeman G
    Dev Biol; 1995 Nov; 172(1):15-36. PubMed ID: 7589795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.