These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19140633)

  • 61. Block copolymer morphology formation on topographically complex surfaces: a self-consistent field theoretical study.
    Ye X; Edwards BJ; Khomami B
    Macromol Rapid Commun; 2014 Apr; 35(7):702-7. PubMed ID: 24470333
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of electric field on the phase transitions of the hexagonal cylinder phase of diblock copolymers.
    Li X; Jiang Y; Li Y; Liang H
    Chemphyschem; 2006 Aug; 7(8):1693-8. PubMed ID: 16832802
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Diblock copolymer templated self-assembly of grafted nanoparticles under circular pore confinement.
    Gupta S; Chokshi P
    Soft Matter; 2020 Apr; 16(14):3522-3535. PubMed ID: 32215433
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Confined crystallization of cylindrical diblock copolymers studied by dynamic Monte Carlo simulations.
    Wang M; Hu W; Ma Y; Ma YQ
    J Chem Phys; 2006 Jun; 124(24):244901. PubMed ID: 16821997
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers, revealed by the temperature-dependent synchrotron WAXD/SAXS and infrared/Raman spectral measurements.
    Weiyu C; Tashiro K; Hanesaka M; Takeda S; Masunaga H; Sasaki S; Takata M
    J Phys Chem B; 2009 Feb; 113(8):2338-46. PubMed ID: 19191717
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Micelle shape transitions in block copolymer/homopolymer blends: comparison of self-consistent field theory with experiment.
    Greenall MJ; Buzza DM; McLeish TC
    J Chem Phys; 2009 Jul; 131(3):034904. PubMed ID: 19624230
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Concentration fluctuation effects on the phase behavior of compressible diblock copolymers.
    Cho J
    J Chem Phys; 2004 May; 120(20):9831-40. PubMed ID: 15268000
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-assembly behavior of AB/AC diblock copolymer mixtures in dilute solution.
    Zhuang Y; Lin J; Wang L; Zhang L
    J Phys Chem B; 2009 Feb; 113(7):1906-13. PubMed ID: 19170547
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers.
    Meuler AJ; Ellison CJ; Qin J; Evans CM; Hillmyer MA; Bates FS
    J Chem Phys; 2009 Jun; 130(23):234903. PubMed ID: 19548752
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simultaneous uniaxial extensional deformation and cylindrical confinement of block copolymers using non-equilibrium molecular dynamics.
    Shebert GL; Joo YL
    Soft Matter; 2018 Feb; 14(8):1389-1396. PubMed ID: 29383370
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Self-assembly of rod-coil diblock copolymers within a rod-selective slit: a dissipative particle dynamics simulation study.
    Huang JH; Ma ZX; Luo MB
    Langmuir; 2014 Jun; 30(21):6267-73. PubMed ID: 24801931
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Self-assembly of diblock copolymer confined in an array-structure space.
    He X; Zou Z; Kan D; Liang H
    J Chem Phys; 2015 Mar; 142(10):101912. PubMed ID: 25770501
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Probing the Effect of Molecular Nonuniformity in Directed Self-Assembly of Diblock Copolymers in Nanoconfined Space.
    Pitet LM; Alexander-Moonen E; Peeters E; Druzhinina TS; Wuister SF; Lynd NA; Meijer EW
    ACS Nano; 2015 Oct; 9(10):9594-602. PubMed ID: 26503195
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Coil fraction-dependent phase behaviour of a model globular protein-polymer diblock copolymer.
    Thomas CS; Olsen BD
    Soft Matter; 2014 May; 10(17):3093-102. PubMed ID: 24695642
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Morphologies and bridging properties of graft copolymers.
    Zhang L; Lin J; Lin S
    J Phys Chem B; 2007 Jan; 111(2):351-7. PubMed ID: 17214485
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A self-consistent field theory study on the morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers.
    Ye X; Yu X; Shi T; Sun Z; An L; Tong Z
    J Phys Chem B; 2006 Nov; 110(46):23578-82. PubMed ID: 17107213
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic pathways of sphere-to-cylinder transition in diblock copolymer melt under electric field.
    Ly DQ; Pinna M; Honda T; Kawakatsu T; Zvelindovsky AV
    J Chem Phys; 2013 Feb; 138(7):074904. PubMed ID: 23445032
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Percolating transport and the conductive scaling relationship in lamellar block copolymers under confinement.
    Diederichsen KM; Brow RR; Stoykovich MP
    ACS Nano; 2015 Mar; 9(3):2465-76. PubMed ID: 25756653
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electric-field-induced lamellar to hexagonally perforated lamellar transition in diblock copolymer thin films: kinetic pathways.
    Mukherjee A; Ankit K; Reiter A; Selzer M; Nestler B
    Phys Chem Chem Phys; 2016 Sep; 18(36):25609-25620. PubMed ID: 27722519
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A theoretical study for nanoparticle partitioning in the lamellae of diblock copolymers.
    Jin J; Wu J
    J Chem Phys; 2008 Feb; 128(7):074901. PubMed ID: 18298168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.