These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19140698)

  • 21. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phage as templates for hybrid materials and mediators for nanomaterial synthesis.
    Merzlyak A; Lee SW
    Curr Opin Chem Biol; 2006 Jun; 10(3):246-52. PubMed ID: 16678469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents.
    Kim SM; Heo HR; Kim CS; Shin HH
    Front Bioeng Biotechnol; 2024; 12():1319830. PubMed ID: 38725991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration.
    Zhu W; O'Brien C; O'Brien JR; Zhang LG
    Nanomedicine (Lond); 2014 May; 9(6):859-75. PubMed ID: 24981651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically Engineered Plant Viral Nanoparticles Direct Neural Cells Differentiation and Orientation.
    Feng S; Lu L; Zan X; Wu Y; Lin Y; Wang Q
    Langmuir; 2015 Sep; 31(34):9402-9. PubMed ID: 26247572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-dimensional bioinspired tactics using an engineered mussel protein glue-based nanofiber conduit for accelerated functional nerve regeneration.
    Cheong H; Kim J; Kim BJ; Kim E; Park HY; Choi BH; Joo KI; Cho ML; Rhie JW; Lee JI; Cha HJ
    Acta Biomater; 2019 May; 90():87-99. PubMed ID: 30978510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering biomaterial microenvironments to promote myelination in the central nervous system.
    Unal DB; Caliari SR; Lampe KJ
    Brain Res Bull; 2019 Oct; 152():159-174. PubMed ID: 31306690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.
    Sunderland KS; Yang M; Mao C
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):1964-1992. PubMed ID: 27491926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun nanostructured scaffolds for tissue engineering applications.
    Martins A; Araújo JV; Reis RL; Neves NM
    Nanomedicine (Lond); 2007 Dec; 2(6):929-42. PubMed ID: 18095855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulation of tendon stem cell differentiation by the alignment of nanofibers.
    Yin Z; Chen X; Chen JL; Shen WL; Hieu Nguyen TM; Gao L; Ouyang HW
    Biomaterials; 2010 Mar; 31(8):2163-75. PubMed ID: 19995669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix.
    Kim HW; Song JH; Kim HE
    J Biomed Mater Res A; 2006 Dec; 79(3):698-705. PubMed ID: 16850456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing bacteriophage engineering through an accelerated evolution platform.
    Favor AH; Llanos CD; Youngblut MD; Bardales JA
    Sci Rep; 2020 Aug; 10(1):13981. PubMed ID: 32814789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique.
    Nain AS; Phillippi JA; Sitti M; Mackrell J; Campbell PG; Amon C
    Small; 2008 Aug; 4(8):1153-9. PubMed ID: 18651720
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.