BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19140742)

  • 1. Protein C-terminal modification through thioacid/azide amidation.
    Zhang X; Li F; Lu XW; Liu CF
    Bioconjug Chem; 2009 Feb; 20(2):197-200. PubMed ID: 19140742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein carboxyl amidation increases the potential extent of protein polyethylene glycol conjugation.
    Li S; Yang Z; Sun X; Tan Y; Yagi S; Hoffman RM
    Anal Biochem; 2004 Jul; 330(2):264-71. PubMed ID: 15203332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of thio acid/azide amidation.
    Kolakowski RV; Shangguan N; Sauers RR; Williams LJ
    J Am Chem Soc; 2006 May; 128(17):5695-702. PubMed ID: 16637636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azide-derivatized gold nanorods: functional materials for "click" chemistry.
    Gole A; Murphy CJ
    Langmuir; 2008 Jan; 24(1):266-72. PubMed ID: 18052398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thio acid/azide amidation: an improved route to N-acyl sulfonamides.
    Barlett KN; Kolakowski RV; Katukojvala S; Williams LJ
    Org Lett; 2006 Mar; 8(5):823-6. PubMed ID: 16494450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of intein thioesters: appending a functional group to a protein.
    Kalia J; Raines RT
    Chembiochem; 2006 Sep; 7(9):1375-83. PubMed ID: 16897799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generic building block for C- and N-terminal protein-labeling and protein-immobilization.
    Watzke A; Gutierrez-Rodriguez M; Köhn M; Wacker R; Schroeder H; Breinbauer R; Kuhlmann J; Alexandrov K; Niemeyer CM; Goody RS; Waldmann H
    Bioorg Med Chem; 2006 Sep; 14(18):6288-306. PubMed ID: 16725326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase.
    Fontana A; Spolaore B; Mero A; Veronese FM
    Adv Drug Deliv Rev; 2008 Jan; 60(1):13-28. PubMed ID: 17916398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays.
    Chattopadhaya S; Tan LP; Yao SQ
    Nat Protoc; 2006; 1(5):2386-98. PubMed ID: 17406482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro method for selective detection of free monomeric ubiquitin by using a C-terminally biotinylated form of ubiquitin.
    Staszczak M
    Int J Biochem Cell Biol; 2007; 39(2):319-26. PubMed ID: 17030000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization.
    Nguyen UT; Cramer J; Gomis J; Reents R; Gutierrez-Rodriguez M; Goody RS; Alexandrov K; Waldmann H
    Chembiochem; 2007 Mar; 8(4):408-23. PubMed ID: 17279592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of chain-end clickable recombinant protein and its bio-orthogonal modification.
    Wang L; Jiang R; Wang L; Liu Y; Sun XL
    Bioorg Chem; 2016 Apr; 65():159-66. PubMed ID: 26953841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative amidation and azidation of aldehydes by NHC catalysis.
    De Sarkar S; Studer A
    Org Lett; 2010 May; 12(9):1992-5. PubMed ID: 20359171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) alpha,omega(n)-telechelics.
    Wurm F; Klos J; Räder HJ; Frey H
    J Am Chem Soc; 2009 Jun; 131(23):7954-5. PubMed ID: 19462953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native chemical ligation derived method for recombinant peptide/protein C-terminal amidation.
    Sun C; Luo G; Neravetla S; Ghosh SS; Forood B
    Bioorg Med Chem Lett; 2013 Sep; 23(18):5203-8. PubMed ID: 23880540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.
    Dirks AT; Cornelissen JJ; Nolte RJ
    Bioconjug Chem; 2009 Jun; 20(6):1129-38. PubMed ID: 19453101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine.
    Ohno S; Matsui M; Yokogawa T; Nakamura M; Hosoya T; Hiramatsu T; Suzuki M; Hayashi N; Nishikawa K
    J Biochem; 2007 Mar; 141(3):335-43. PubMed ID: 17202192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal site-specific PEGylation of a truncated thrombomodulin mutant with retention of full bioactivity.
    Cazalis CS; Haller CA; Sease-Cargo L; Chaikof EL
    Bioconjug Chem; 2004; 15(5):1005-9. PubMed ID: 15366953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide bridge based PEGylation of proteins.
    Brocchini S; Godwin A; Balan S; Choi JW; Zloh M; Shaunak S
    Adv Drug Deliv Rev; 2008 Jan; 60(1):3-12. PubMed ID: 17920720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.