These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19140793)

  • 1. Iron nanoparticle growth in organic superstructures.
    Lacroix LM; Lachaize S; Falqui A; Respaud M; Chaudret B
    J Am Chem Soc; 2009 Jan; 131(2):549-57. PubMed ID: 19140793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes.
    Bronstein LM; Atkinson JE; Malyutin AG; Kidwai F; Stein BD; Morgan DG; Perry JM; Karty JA
    Langmuir; 2011 Mar; 27(6):3044-50. PubMed ID: 21294561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle Ripening : A Versatile Approach for the Size and Shape Control of Metallic Iron Nanoparticles.
    Lacroix LM; Meffre A; Gatel C; Fazzini PF; Lachaize S; Respaud M; Chaudret B
    Chempluschem; 2019 Mar; 84(3):302-306. PubMed ID: 31950761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions.
    Valle-Orta M; Diaz D; Santiago-Jacinto P; Vázquez-Olmos A; Reguera E
    J Phys Chem B; 2008 Nov; 112(46):14427-34. PubMed ID: 18855464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of nanoparticle superstructures on the basis of host-guest interaction to achieve performance integration and modulation.
    Chen Z; Li J; Zhang X; Wu Z; Zhang H; Sun H; Yang B
    Phys Chem Chem Phys; 2012 May; 14(17):6119-25. PubMed ID: 22441168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The zero field self-organization of cobalt/surfactant nanocomposite thin films.
    Cataldo S; Pignataro B; Ruggirello A; Bongiorno C; Liveri VT
    Nanotechnology; 2009 Jun; 20(22):225605. PubMed ID: 19436090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the shapes of Fe(x)Pt(100-x) nanoparticles.
    Shukla N; Nigra MM; Nuhfer T; Bartel MA; Gellman AJ
    Nanotechnology; 2009 Feb; 20(6):065602. PubMed ID: 19417390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties.
    Morel AL; Nikitenko SI; Gionnet K; Wattiaux A; Lai-Kee-Him J; Labrugere C; Chevalier B; Deleris G; Petibois C; Brisson A; Simonoff M
    ACS Nano; 2008 May; 2(5):847-56. PubMed ID: 19206481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle shape evolution identified through multivariate statistics.
    Huitink D; Kundu S; Park C; Mallick B; Huang JZ; Liang H
    J Phys Chem A; 2010 May; 114(17):5596-600. PubMed ID: 20392101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable wetting of nanoparticle-decorated polymer films.
    McConnell MD; Bassani AW; Yang S; Composto RJ
    Langmuir; 2009 Sep; 25(18):11014-20. PubMed ID: 19735150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles.
    Kim H; Akagi T; Akashi M
    Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles.
    Alivov Y; Fan ZY
    Nanotechnology; 2009 Oct; 20(40):405610. PubMed ID: 19752502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes.
    Tsoufis T; Tomou A; Gournis D; Douvalis AP; Panagiotopoulos I; Kooi B; Georgakilas V; Arfaoui I; Bakas T
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5942-51. PubMed ID: 19198330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical synthesis and structural characterization of highly disordered N colloidal nanoparticles.
    Winnischofer H; Rocha TC; Nunes WC; Socolovsky LM; Knobel M; Zanchet D
    ACS Nano; 2008 Jun; 2(6):1313-9. PubMed ID: 19206350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mazes: luminescent labyrinthine semiconductor nanocrystals having a narrow emission spectrum.
    De Paoli Lacerda SH; Douglas JF; Hudson SD; Roy M; Johnson JM; Becker ML; Karim A
    ACS Nano; 2007 Nov; 1(4):337-47. PubMed ID: 19206685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2.
    Dumestre F; Chaudret B; Amiens C; Renaud P; Fejes P
    Science; 2004 Feb; 303(5659):821-3. PubMed ID: 14764874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloid chemical reaction route to the preparation of nearly monodispersed perylene nanoparticles: size-tunable synthesis and three-dimensional self-organization.
    Kang L; Wang Z; Cao Z; Ma Y; Fu H; Yao J
    J Am Chem Soc; 2007 Jun; 129(23):7305-12. PubMed ID: 17511454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.
    Jiang C; Leung CW; Pong PW
    Nanoscale Res Lett; 2016 Dec; 11(1):189. PubMed ID: 27067737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.