These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 19140799)

  • 1. Microcontact printing of dendrimers, proteins, and nanoparticles by porous stamps.
    Xu H; Ling XY; van Bennekom J; Duan X; Ludden MJ; Reinhoudt DN; Wessling M; Lammertink RG; Huskens J
    J Am Chem Soc; 2009 Jan; 131(2):797-803. PubMed ID: 19140799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile stamps in microcontact printing: transferring inks by molecular recognition and from ink reservoirs.
    Xu H; Huskens J
    Chemistry; 2010 Feb; 16(8):2342-8. PubMed ID: 20127770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional, chemically patterned flat stamps for microcontact printing of polar inks.
    Duan X; Sadhu VB; Perl A; Péter M; Reinhoudt DN; Huskens J
    Langmuir; 2008 Apr; 24(7):3621-7. PubMed ID: 18294009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of elastomeric stamps for microcontact printing of polar inks.
    Sadhu VB; Perl A; Péter M; Rozkiewicz DI; Engbers G; Ravoo BJ; Reinhoudt DN; Huskens J
    Langmuir; 2007 Jun; 23(12):6850-5. PubMed ID: 17480107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the supramolecular assembly of redox-active dendrimers at molecular printboards by scanning electrochemical microscopy.
    Nijhuis CA; Sinha JK; Wittstock G; Huskens J; Ravoo BJ; Reinhoudt DN
    Langmuir; 2006 Nov; 22(23):9770-5. PubMed ID: 17073510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen plasma-treatment effects on Si transfer.
    Langowski BA; Uhrich KE
    Langmuir; 2005 Jul; 21(14):6366-72. PubMed ID: 15982043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holey carbon micro-arrays for transmission electron microscopy: a microcontact printing approach.
    Chester DW; Klemic JF; Stern E; Sigworth FJ; Klemic KG
    Ultramicroscopy; 2007 Aug; 107(8):685-91. PubMed ID: 17331648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric inkjet printing of biomimetic inks for reactive surfaces.
    Deravi LF; Sumerel JL; Sewell SL; Wright DW
    Small; 2008 Dec; 4(12):2127-30. PubMed ID: 18985670
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular printboards on silicon oxide: lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules.
    Mulder A; Onclin S; Péter M; Hoogenboom JP; Beijleveld H; ter Maat J; García-Parajó MF; Ravoo BJ; Huskens J; van Hulst NF; Reinhoudt DN
    Small; 2005 Feb; 1(2):242-53. PubMed ID: 17193439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions.
    Mahalingam V; Onclin S; Péter M; Ravoo BJ; Huskens J; Reinhoudt DN
    Langmuir; 2004 Dec; 20(26):11756-62. PubMed ID: 15595808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscopic Pd line arrays using nanocontact printed dendrimers.
    Jang SG; Choi DG; Kim S; Jeong JH; Lee ES; Yang SM
    Langmuir; 2006 Mar; 22(7):3326-31. PubMed ID: 16548596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-defined flat PDMS stamps suitable for microcontact printing.
    Xue CY; Chin SY; Khan SA; Yang KL
    Langmuir; 2010 Mar; 26(5):3739-43. PubMed ID: 19810720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle printing with single-particle resolution.
    Kraus T; Malaquin L; Schmid H; Riess W; Spencer ND; Wolf H
    Nat Nanotechnol; 2007 Sep; 2(9):570-6. PubMed ID: 18654370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcontact printing of proteins inside microstructures.
    Foley J; Schmid H; Stutz R; Delamarche E
    Langmuir; 2005 Nov; 21(24):11296-303. PubMed ID: 16285803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic micropatterning of silica by surface-initiated polymerization and microcontact printing.
    Kim DJ; Lee KB; Lee TG; Shon HK; Kim WJ; Paik HJ; Choi IS
    Small; 2005 Oct; 1(10):992-6. PubMed ID: 17193384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavyweight dendritic inks for positive microcontact printing.
    Perl A; Péter M; Ravoo BJ; Reinhoudt DN; Huskens J
    Langmuir; 2006 Aug; 22(18):7568-73. PubMed ID: 16922534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular boxes on a molecular printboard: encapsulation of anionic dyes in immobilized dendrimers.
    Onclin S; Huskens J; Ravoo BJ; Reinhoudt DN
    Small; 2005 Aug; 1(8-9):852-7. PubMed ID: 17193539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Janus-SAM approach for the flexible functionalization of gold and titanium oxide surfaces.
    Bhat R; Sell S; Wagner R; Zhang JT; Pan C; Garipcan B; Boland W; Bossert J; Klemm E; Jandt KD
    Small; 2010 Feb; 6(3):465-70. PubMed ID: 19924741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive microcontact printing with mercaptoalkyloligo(ethylene glycol)s.
    Saalmink M; van der Marel C; Stapert HR; Burdinski D
    Langmuir; 2006 Jan; 22(3):1016-26. PubMed ID: 16430261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.