These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 19140990)
1. Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance. Garbuz DG; Zatsepina OG; Przhiboro AA; Yushenova I; Guzhova IV; Evgen'ev MB Mol Ecol; 2008 Nov; 17(21):4763-77. PubMed ID: 19140990 [TBL] [Abstract][Full Text] [Related]
2. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386 [TBL] [Abstract][Full Text] [Related]
3. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments. Garbuz DG; Yushenova IA; Zatsepina OG; Przhiboro AA; Bettencourt BR; Evgen'ev MB BMC Evol Biol; 2011 Mar; 11():74. PubMed ID: 21426536 [TBL] [Abstract][Full Text] [Related]
4. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). Astakhova LN; Zatsepina OG; Przhiboro AA; Evgen'ev MB; Garbuz DG Insect Mol Biol; 2013 Jun; 22(3):284-96. PubMed ID: 23521688 [TBL] [Abstract][Full Text] [Related]
5. A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species. Zatsepina OG; Przhiboro AA; Yushenova IA; Shilova V; Zelentsova ES; Shostak NG; Evgen'ev MB; Garbuz DG Insect Mol Biol; 2016 Aug; 25(4):431-49. PubMed ID: 27089053 [TBL] [Abstract][Full Text] [Related]
6. [Evolution of the response to heat shock in genus Drosophila]. Garbuz DG; Molodtsov VB; Velikodvorskaia VV; Evgen'ev MB; Zatsepina OG Genetika; 2002 Aug; 38(8):1097-109. PubMed ID: 12244694 [TBL] [Abstract][Full Text] [Related]
7. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943 [TBL] [Abstract][Full Text] [Related]
8. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. Bedulina DS; Evgen'ev MB; Timofeyev MA; Protopopova MV; Garbuz DG; Pavlichenko VV; Luckenbach T; Shatilina ZM; Axenov-Gribanov DV; Gurkov AN; Sokolova IM; Zatsepina OG Mol Ecol; 2013 Mar; 22(5):1416-30. PubMed ID: 23331571 [TBL] [Abstract][Full Text] [Related]
9. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Fangue NA; Hofmeister M; Schulte PM J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869 [TBL] [Abstract][Full Text] [Related]
10. Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Cara JB; Aluru N; Moyano FJ; Vijayan MM Comp Biochem Physiol B Biochem Mol Biol; 2005 Dec; 142(4):426-31. PubMed ID: 16257553 [TBL] [Abstract][Full Text] [Related]
11. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. Folk DG; Zwollo P; Rand DM; Gilchrist GW J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590 [TBL] [Abstract][Full Text] [Related]
12. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740 [TBL] [Abstract][Full Text] [Related]
13. The molecular chaperone Hsp70 from the thermotolerant Diptera species differs from the Drosophila paralog in its thermostability and higher refolding capacity at extreme temperatures. Garbuz DG; Sverchinsky D; Davletshin A; Margulis BA; Mitkevich V; Kulikov AM; Evgen'ev MB Cell Stress Chaperones; 2019 Nov; 24(6):1163-1173. PubMed ID: 31664698 [TBL] [Abstract][Full Text] [Related]
14. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines. Hundt W; O'Connell-Rodwell CE; Bednarski MD; Steinbach S; Guccione S Acad Radiol; 2007 Jul; 14(7):859-70. PubMed ID: 17574136 [TBL] [Abstract][Full Text] [Related]
15. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle. Rank NE; Bruce DA; McMillan DM; Barclay C; Dahlhoff EP J Exp Biol; 2007 Mar; 210(Pt 5):750-64. PubMed ID: 17297136 [TBL] [Abstract][Full Text] [Related]
16. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. Tachibana S; Numata H; Goto SG J Insect Physiol; 2005 Jun; 51(6):641-7. PubMed ID: 15993128 [TBL] [Abstract][Full Text] [Related]
17. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Tomanek L J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122 [TBL] [Abstract][Full Text] [Related]
18. Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae). Yiangou M; Tsapogas P; Nikolaidis N; Scouras ZG Cytobios; 1997; 92(369):91-8. PubMed ID: 9693879 [TBL] [Abstract][Full Text] [Related]