These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 19141303)
1. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303 [TBL] [Abstract][Full Text] [Related]
2. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
3. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations. Dauphin LA; Bowen MD J Microbiol Methods; 2009 Feb; 76(2):212-4. PubMed ID: 18996156 [TBL] [Abstract][Full Text] [Related]
4. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces. Hodges LR; Rose LJ; O'Connell H; Arduino MJ J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA; Moser BD; Bowen MD J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the Cepheid GeneXpert system for detecting Bacillus anthracis. Ulrich MP; Christensen DR; Coyne SR; Craw PD; Henchal EA; Sakai SH; Swenson D; Tholath J; Tsai J; Weir AF; Norwood DA J Appl Microbiol; 2006 May; 100(5):1011-6. PubMed ID: 16630001 [TBL] [Abstract][Full Text] [Related]
7. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis. Buttner MP; Cruz P; Stetzenbach LD; Klima-Comba AK; Stevens VL; Cronin TD Appl Environ Microbiol; 2004 Aug; 70(8):4740-7. PubMed ID: 15294810 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of interference to conventional and real-time PCR for detection and quantification of fungi in dust. Keswani J; Kashon ML; Chen BT J Environ Monit; 2005 Apr; 7(4):311-8. PubMed ID: 15798797 [TBL] [Abstract][Full Text] [Related]
9. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2001 Dec; 50(48):1087. PubMed ID: 11770505 [TBL] [Abstract][Full Text] [Related]
10. Detection of spores of Bacillus anthracis from environment using polymerase chain reaction. Alam SI; Agarwal GS; Kamboj DV; Rai GP; Singh L Indian J Exp Biol; 2003 Feb; 41(2):177-80. PubMed ID: 15255613 [TBL] [Abstract][Full Text] [Related]
11. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture. Hutchison JR; Piepel GF; Amidan BG; Hess BM; Sydor MA; Deatherage Kaiser BL J Appl Microbiol; 2018 May; 124(5):1092-1106. PubMed ID: 29356220 [TBL] [Abstract][Full Text] [Related]
12. High throughput screening for spores and vegetative forms of pathogenic B. anthracis by an internally controlled real-time PCR assay with automated DNA preparation. Panning M; Kramme S; Petersen N; Drosten C Med Microbiol Immunol; 2007 Mar; 196(1):41-50. PubMed ID: 17093976 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a modified rapid viability-polymerase chain reaction method for Bacillus atrophaeus spores in water matrices. Bushon RN; Brady AMG; Kephart CM; Gallardo V J Microbiol Methods; 2021 Sep; 188():106293. PubMed ID: 34324928 [TBL] [Abstract][Full Text] [Related]
14. Simple and rapid method for detection of bacterial spores in powder useful for first responders. Min J; Lee J; Deininger RA J Environ Health; 2006 Apr; 68(8):34-7, 44, 46. PubMed ID: 16637561 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Bacillus anthracis spores isolates from soil by biochemical and multiplex PCR analysis. Vahedi F; Moazeni Jula G; Kianizadeh M; Mahmoudi M East Mediterr Health J; 2009; 15(1):149-56. PubMed ID: 19469438 [TBL] [Abstract][Full Text] [Related]
16. An integrated culture and real-time PCR method to assess viability of disinfectant treated Bacillus spores using robotics and the MPN quantification method. Varughese EA; Wymer LJ; Haugland RA J Microbiol Methods; 2007 Oct; 71(1):66-70. PubMed ID: 17804100 [TBL] [Abstract][Full Text] [Related]
17. Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. Rueckert A; Ronimus RS; Morgan HW J Appl Microbiol; 2005; 99(5):1246-55. PubMed ID: 16238756 [TBL] [Abstract][Full Text] [Related]
18. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Létant SE; Murphy GA; Alfaro TM; Avila JR; Kane SR; Raber E; Bunt TM; Shah SR Appl Environ Microbiol; 2011 Sep; 77(18):6570-8. PubMed ID: 21764960 [TBL] [Abstract][Full Text] [Related]
19. Wet and dry density of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Sagripanti JL J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528 [TBL] [Abstract][Full Text] [Related]
20. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials. Rogers JV; Choi YW; Richter WR; Rudnicki DC; Joseph DW; Sabourin CL; Taylor ML; Chang JC J Appl Microbiol; 2007 Oct; 103(4):1104-12. PubMed ID: 17897215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]