These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19141470)

  • 61. Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions.
    Zhang J
    Wiley Interdiscip Rev RNA; 2020 Nov; 11(6):e1600. PubMed ID: 32633085
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
    Price IR; Gaballa A; Ding F; Helmann JD; Ke A
    Mol Cell; 2015 Mar; 57(6):1110-1123. PubMed ID: 25794619
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bacterial gene regulation: metal ion sensing by proteins or RNA.
    Brantl S
    Trends Biotechnol; 2006 Sep; 24(9):383-6. PubMed ID: 16872703
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Riboswitch-based antibacterial drug discovery using high-throughput screening methods.
    Penchovsky R; Stoilova CC
    Expert Opin Drug Discov; 2013 Jan; 8(1):65-82. PubMed ID: 23163232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes.
    Sherlock ME; Breaker RR
    RNA; 2020 Jun; 26(6):675-693. PubMed ID: 32165489
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Antibacterial lysine analogs that target lysine riboswitches.
    Blount KF; Wang JX; Lim J; Sudarsan N; Breaker RR
    Nat Chem Biol; 2007 Jan; 3(1):44-9. PubMed ID: 17143270
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Assessing RNA interactions with proteins by DRaCALA.
    Patel DK; Gebbie MP; Lee VT
    Methods Enzymol; 2014; 549():489-512. PubMed ID: 25432762
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline.
    Weinberg Z; Barrick JE; Yao Z; Roth A; Kim JN; Gore J; Wang JX; Lee ER; Block KF; Sudarsan N; Neph S; Tompa M; Ruzzo WL; Breaker RR
    Nucleic Acids Res; 2007; 35(14):4809-19. PubMed ID: 17621584
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Sponge RNAs of bacteria - How to find them and their role in regulating the post-transcriptional network.
    Denham EL
    Biochim Biophys Acta Gene Regul Mech; 2020 Aug; 1863(8):194565. PubMed ID: 32475775
    [TBL] [Abstract][Full Text] [Related]  

  • 70. RNA-mediated regulation in bacteria: from natural to artificial systems.
    Lioliou E; Romilly C; Romby P; Fechter P
    N Biotechnol; 2010 Jul; 27(3):222-35. PubMed ID: 20211281
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Biochemical Landscape of Riboswitch Ligands.
    Breaker RR
    Biochemistry; 2022 Feb; 61(3):137-149. PubMed ID: 35068140
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.
    Sun EI; Leyn SA; Kazanov MD; Saier MH; Novichkov PS; Rodionov DA
    BMC Genomics; 2013 Sep; 14():597. PubMed ID: 24060102
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthetase of the methyl donor S-adenosylmethionine from nitrogen-fixing α-rhizobia can bind functionally diverse RNA species.
    Robledo M; García-Tomsig NI; Matia-González AM; García-Rodríguez FM; Jiménez-Zurdo JI
    RNA Biol; 2021 Aug; 18(8):1111-1123. PubMed ID: 33043803
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes.
    Wedekind JE; Dutta D; Belashov IA; Jenkins JL
    J Biol Chem; 2017 Jun; 292(23):9441-9450. PubMed ID: 28455443
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The distributions, mechanisms, and structures of metabolite-binding riboswitches.
    Barrick JE; Breaker RR
    Genome Biol; 2007; 8(11):R239. PubMed ID: 17997835
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The intricate world of riboswitches.
    Coppins RL; Hall KB; Groisman EA
    Curr Opin Microbiol; 2007 Apr; 10(2):176-81. PubMed ID: 17383225
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level.
    Altuvia S; Storz G; Papenfort K
    Microbiol Spectr; 2018 Jul; 6(4):. PubMed ID: 30006994
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella.
    Shi Y; Zhao G; Kong W
    J Biol Chem; 2014 Apr; 289(16):11353-11366. PubMed ID: 24596096
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bacterial sRNAs: regulation in stress.
    Hoe CH; Raabe CA; Rozhdestvensky TS; Tang TH
    Int J Med Microbiol; 2013 Jul; 303(5):217-29. PubMed ID: 23660175
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs.
    Durica-Mitic S; Göpel Y; Görke B
    Microbiol Spectr; 2018 Mar; 6(2):. PubMed ID: 29573258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.