BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 1914153)

  • 21. A novel morphological technique to investigate a single climbing fibre synaptogenesis with a Purkinje cell in the developing mouse cerebellum: DiI injection into the inferior cerebellar peduncle.
    Kiyohara Y; Endo K; Ide C; Mizoguchi A
    J Electron Microsc (Tokyo); 2003; 52(3):327-35. PubMed ID: 12892223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse.
    Sotelo C
    Brain Res; 1975 Aug; 94(1):19-44. PubMed ID: 1148865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum.
    Baude A; Molnár E; Latawiec D; McIlhinney RA; Somogyi P
    J Neurosci; 1994 May; 14(5 Pt 1):2830-43. PubMed ID: 8182442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA; Christakos S; Catalano SM
    J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pathogenesis of parvovirus-induced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, Golgi and electron microscopic studies.
    Oster-Granite ML; Herndon RM
    J Comp Neurol; 1976 Oct; 169(4):481-521. PubMed ID: 789416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The innervation of calcitonin gene-related peptide to the Purkinje cells and granule cells in the developing mouse cerebellum.
    Yamano M; Tohyama M
    Brain Res Dev Brain Res; 1993 Mar; 72(1):107-17. PubMed ID: 8453761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum.
    Kano M; Watanabe T; Uesaka N; Watanabe M
    Cerebellum; 2018 Dec; 17(6):722-734. PubMed ID: 30009357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the effects of climbing fiber deafferentation in adult and weanling rats.
    Anderson WA; Flumerfelt BA
    Brain Res; 1986 Sep; 383(1-2):228-44. PubMed ID: 3768690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serial changes in granuloprival cerebellar cultures after transplantation with granule cells and glia: a timed ultrastructural study.
    Seil FJ
    Neuroscience; 1997 Apr; 77(3):695-711. PubMed ID: 9070746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells.
    Rossi F; van der Want JJ; Wiklund L; Strata P
    J Comp Neurol; 1991 Jun; 308(4):536-54. PubMed ID: 1865016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical period for activity-dependent synapse elimination in developing cerebellum.
    Kakizawa S; Yamasaki M; Watanabe M; Kano M
    J Neurosci; 2000 Jul; 20(13):4954-61. PubMed ID: 10864953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity of the developmentally arrested staggerer cerebellum in response to exogenous RORα.
    Iizuka A; Matsuzaki Y; Konno A; Hirai H
    Brain Struct Funct; 2016 Jul; 221(6):2879-89. PubMed ID: 26122696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination.
    Lohof AM; Mariani J; Sherrard RM
    Eur J Neurosci; 2005 Dec; 22(11):2681-8. PubMed ID: 16324102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructural localization of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellar cortex.
    Yamada M; Kakita A; Mizuguchi M; Rhee SG; Kim SU; Ikuta F
    Brain Res; 1992 Apr; 578(1-2):41-8. PubMed ID: 1324766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the rodent cerebellum and synaptic re-formation of donor climbing terminals on spines of the host Purkinje dendrites after chemical deafferentation.
    Kawamura K; Murase S; Yuasa S
    J Exp Biol; 1990 Oct; 153():289-303. PubMed ID: 2280226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of olivocerebellar fibers in the clawed toad, Xenopus laevis: a light and electron microscopical HRP study.
    van der Linden JA; ten Donkelaar HJ; De Boer-van Huizen R
    J Comp Neurol; 1990 Mar; 293(2):236-52. PubMed ID: 19189714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 5'-Nucleotidase activity of mossy fibers in the dentate gyrus of normal and epileptic rats.
    Schoen SW; Ebert U; Löscher W
    Neuroscience; 1999; 93(2):519-26. PubMed ID: 10465435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses.
    Ohtsuki G; Hirano T
    Eur J Neurosci; 2008 Dec; 28(12):2393-400. PubMed ID: 19032589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1.
    Kano M; Hashimoto K; Kurihara H; Watanabe M; Inoue Y; Aiba A; Tonegawa S
    Neuron; 1997 Jan; 18(1):71-9. PubMed ID: 9010206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.