BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19142030)

  • 1. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography.
    Landa G; Garcia PM; Rosen RB
    Ophthalmologica; 2009; 223(3):155-61. PubMed ID: 19142030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking Vascular Structure and Function: Image-Based Virtual Populations of the Retina.
    Hernandez RJ; Madhusudhan S; Zheng Y; El-Bouri WK
    Invest Ophthalmol Vis Sci; 2024 Apr; 65(4):40. PubMed ID: 38683566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography.
    Werkmeister RM; Palkovits S; Told R; Gröschl M; Leitgeb RA; Garhöfer G; Schmetterer L
    PLoS One; 2012; 7(9):e45876. PubMed ID: 23029289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portable, non-invasive video imaging of retinal blood flow dynamics.
    Cho KA; Rege A; Jing Y; Chaurasia A; Guruprasad A; Arthur E; Cabrera DeBuc D
    Sci Rep; 2020 Nov; 10(1):20236. PubMed ID: 33214571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the Retinal Vasculature.
    Burns SA; Elsner AE; Gast TJ
    Annu Rev Vis Sci; 2021 Sep; 7():129-153. PubMed ID: 34171198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retromode imaging in retinal diseases: A systematic review of the literature.
    Sukkarieh G; Issa M; Bruneau S; Couturier A; Tadayoni R
    Surv Ophthalmol; 2023; 68(6):1027-1037. PubMed ID: 37481077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT.
    Srinivasan VJ; Chen Y; Duker JS; Fujimoto JG
    Opt Express; 2009 Mar; 17(5):3861-77. PubMed ID: 19259228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy.
    Tam J; Roorda A
    J Biomed Opt; 2011 Mar; 16(3):036002. PubMed ID: 21456866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo confocal intrinsic optical signal identification of localized retinal dysfunction.
    Zhang QX; Lu RW; Curcio CA; Yao XC
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8139-45. PubMed ID: 23150616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clinical planning module for adaptive optics SLO imaging.
    Huang G; Qi X; Chui TY; Zhong Z; Burns SA
    Optom Vis Sci; 2012 May; 89(5):593-601. PubMed ID: 22488269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute retinal blood flow in healthy eyes and in eyes with retinal vein occlusion.
    Mautuit T; Cunnac P; Truffer F; Anjos A; Dufrane R; Maître G; Geiser M; Chiquet C
    Microvasc Res; 2024 Mar; 152():104648. PubMed ID: 38123065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope.
    Mamtora S; Sandinha MT; Ajith A; Song A; Steel DHW
    Eye (Lond); 2018 Nov; 32(11):1766-1771. PubMed ID: 30042410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO.
    Zhang P; Goswami M; Zam A; Pugh EN; Zawadzki RJ
    Opt Lett; 2015 Dec; 40(24):5830-3. PubMed ID: 26670523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free imaging of immune cell dynamics in the living retina using adaptive optics.
    Joseph A; Chu CJ; Feng G; Dholakia K; Schallek J
    Elife; 2020 Oct; 9():. PubMed ID: 33052099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploratory study of non-invasive, high-resolution functional macular imaging in subjects with diabetic retinopathy.
    Campagnoli TR; Somfai GM; Tian J; DeBuc DC; Smiddy WE
    Int J Ophthalmol; 2021; 14(1):57-63. PubMed ID: 33469484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical applications of the retinal functional imager: A brief review.
    Jayadev C; Jain N; Mohan A; Yadav NK
    Indian J Ophthalmol; 2019 Oct; 67(10):1531-1535. PubMed ID: 31546475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: The Taiwa Study.
    Sato R; Kunikata H; Asano T; Aizawa N; Kiyota N; Shiga Y; Nishiguchi KM; Kato K; Nakazawa T
    Sci Rep; 2019 Jun; 9(1):8875. PubMed ID: 31221998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal tissue hypoperfusion in patients with clinical Alzheimer's disease.
    Gameiro GR; Jiang H; Liu Y; Deng Y; Sun X; Nascentes B; Baumel B; Rundek T; Wang J
    Eye Vis (Lond); 2018; 5():21. PubMed ID: 30140712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired retinal microcirculation in patients with Alzheimer's disease.
    Jiang H; Liu Y; Wei Y; Shi Y; Wright CB; Sun X; Rundek T; Baumel BS; Landman J; Wang J
    PLoS One; 2018; 13(2):e0192154. PubMed ID: 29394263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Retinal Microvessel Blood Flow Velocities Acquired with Two Different Fields of View.
    Zhou J; Li M; Chen W; Yang Y; Hu L; Wang L; Jiang H; Wang J
    J Ophthalmol; 2017; 2017():2895982. PubMed ID: 28758031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.