These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19142221)

  • 1. Experience-driven axon retraction in the pharmacologically inactivated visual cortex does not require synaptic transmission.
    Watanabe K; Morishima Y; Toigawa M; Hata Y
    PLoS One; 2009; 4(1):e4193. PubMed ID: 19142221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experience-driven axon retraction without binocular imbalance in developing visual cortex.
    Haruta M; Hata Y
    Curr Biol; 2007 Jan; 17(1):37-42. PubMed ID: 17208184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical period of experience-driven axon retraction in the pharmacologically inhibited visual cortex.
    Morishima Y; Toigawa M; Ohmura N; Yoneda T; Tagane Y; Hata Y
    Cereb Cortex; 2013 Oct; 23(10):2423-8. PubMed ID: 22875858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited.
    Hata Y; Tsumoto T; Stryker MP
    Neuron; 1999 Feb; 22(2):375-81. PubMed ID: 10069342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
    Silver MA; Stryker MP
    J Neurosci; 1999 Dec; 19(24):10829-42. PubMed ID: 10594065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sensory disuse on geniculate afferents to cat visual cortex.
    Antonini A; Stryker MP
    Vis Neurosci; 1998; 15(3):401-9. PubMed ID: 9685193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TrkB-like immunoreactivity is present on geniculocortical afferents in layer IV of kitten primary visual cortex.
    Silver MA; Stryker MP
    J Comp Neurol; 2001 Aug; 436(4):391-8. PubMed ID: 11447584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of monocular deprivation on geniculocortical synapses in the cat.
    Tieman SB
    J Comp Neurol; 1984 Jan; 222(2):166-76. PubMed ID: 6699206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten.
    Antonini A; Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 1998 Dec; 18(23):9896-909. PubMed ID: 9822746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark Rearing Promotes the Recovery of Visual Cortical Responses but Not the Morphology of Geniculocortical Axons in Amblyopic Cat.
    Gotou T; Kameyama K; Kobayashi A; Okamura K; Ando T; Terata K; Yamada C; Ohta H; Morizane A; Hata Y
    Front Neural Circuits; 2021; 15():637638. PubMed ID: 33935657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological and morphological correlates in the development of visual cortical circuitry in infant kittens.
    Komatsu Y; Fujii K; Nakajima S; Umetani K; Toyama K
    Brain Res; 1985 Oct; 354(2):305-9. PubMed ID: 2996718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat.
    Friedlander MJ; Martin KA; Wassenhove-McCarthy D
    J Neurosci; 1991 Oct; 11(10):3268-88. PubMed ID: 1941084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of ocular dominance columns in the absence of retinal input.
    Crowley JC; Katz LC
    Nat Neurosci; 1999 Dec; 2(12):1125-30. PubMed ID: 10570491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributions of synaptic vesicle proteins and GAD65 in deprived and nondeprived ocular dominance columns in layer IV of kitten primary visual cortex are unaffected by monocular deprivation.
    Silver MA; Stryker MP
    J Comp Neurol; 2000 Jul; 422(4):652-64. PubMed ID: 10861531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited.
    Reiter HO; Stryker MP
    Proc Natl Acad Sci U S A; 1988 May; 85(10):3623-7. PubMed ID: 3285347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathfinding and target selection by developing geniculocortical axons.
    Ghosh A; Shatz CJ
    J Neurosci; 1992 Jan; 12(1):39-55. PubMed ID: 1729444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex.
    Friauf E; McConnell SK; Shatz CJ
    J Neurosci; 1990 Aug; 10(8):2601-13. PubMed ID: 2388080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anatomy of geniculocortical connections in monocularly deprived cats.
    Tieman SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):35-45. PubMed ID: 3896494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segregation of geniculocortical afferents during the critical period: a role for subplate neurons.
    Ghosh A; Shatz CJ
    J Neurosci; 1994 Jun; 14(6):3862-80. PubMed ID: 8207493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.