These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19142235)

  • 21. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL; Mei LZ; Arle JE
    Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions.
    Chaturvedi A; Butson CR; Lempka SF; Cooper SE; McIntyre CC
    Brain Stimul; 2010 Apr; 3(2):65-7. PubMed ID: 20607090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.
    Yousif N; Liu X
    J Neurosci Methods; 2009 Oct; 184(1):142-51. PubMed ID: 19596028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry.
    Willsie AC; Dorval AD
    Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of patient-specific stimulation with segmented leads in the subthalamic nucleus.
    Nguyen TAK; Djilas M; Nowacki A; Mercanzini A; Schüpbach M; Renaud P; Pollo C
    PLoS One; 2019; 14(6):e0217985. PubMed ID: 31216311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atlas-independent, N-of-1 tissue activation modeling to map optimal regions of subthalamic deep brain stimulation for Parkinson disease.
    Malaga KA; Costello JT; Chou KL; Patil PG
    Neuroimage Clin; 2021; 29():102518. PubMed ID: 33333464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steering deep brain stimulation fields using a high resolution electrode array.
    Toader E; Decre MM; Martens HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2061-4. PubMed ID: 21096152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device.
    Steigerwald F; Müller L; Johannes S; Matthies C; Volkmann J
    Mov Disord; 2016 Aug; 31(8):1240-3. PubMed ID: 27241197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated.
    Duffley G; Anderson DN; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2019 Oct; 16(6):066024. PubMed ID: 31426036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation.
    Howell B; McIntyre CC
    Brain Stimul; 2017; 10(1):46-50. PubMed ID: 27720186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subthalamic nucleus deep brain stimulation: accurate axonal threshold prediction with diffusion tensor based electric field models.
    Chaturvedi A; Butson CR; Cooper SE; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1240-3. PubMed ID: 17946452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
    Howell B; McIntyre CC
    J Neural Eng; 2016 Jun; 13(3):036023. PubMed ID: 27172137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation.
    Chaturvedi A; Luján JL; McIntyre CC
    J Neural Eng; 2013 Oct; 10(5):056023. PubMed ID: 24060691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-Heat Model of Kilohertz-Frequency Deep Brain Stimulation Increases Brain Tissue Temperature.
    Khadka N; Harmsen IE; Lozano AM; Bikson M
    Neuromodulation; 2020 Jun; 23(4):489-495. PubMed ID: 32058634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of methodologies for modeling directional deep brain stimulation electrodes.
    Frankemolle-Gilbert AM; Howell B; Bower KL; Veltink PH; Heida T; McIntyre CC
    PLoS One; 2021; 16(12):e0260162. PubMed ID: 34910744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways.
    Peña E; Zhang S; Patriat R; Aman JE; Vitek JL; Harel N; Johnson MD
    J Neural Eng; 2018 Dec; 15(6):066020. PubMed ID: 30211697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orientation selective deep brain stimulation of the subthalamic nucleus in rats.
    Lehto LJ; Canna A; Wu L; Sierra A; Zhurakovskaya E; Ma J; Pearce C; Shaio M; Filip P; Johnson MD; Low WC; Gröhn O; Tanila H; Mangia S; Michaeli S
    Neuroimage; 2020 Jun; 213():116750. PubMed ID: 32198048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling of deep brain stimulation.
    McIntyre CC; Foutz TJ
    Handb Clin Neurol; 2013; 116():55-61. PubMed ID: 24112884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.