These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19142677)

  • 1. Multiple spike initiation zones in a neuron implicated in learning in the leech: a computational model.
    Crisp KM
    Invert Neurosci; 2009 Mar; 9(1):1-10. PubMed ID: 19142677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3-synapse positive feedback loop regulates the excitability of an interneuron critical for sensitization in the leech.
    Crisp KM; Muller KJ
    J Neurosci; 2006 Mar; 26(13):3524-31. PubMed ID: 16571760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of chemical and electrical synaptic transmission between single sensory cells and a motoneurone in the central nervous system of the leech.
    Nicholls JG; Purves D
    J Physiol; 1972 Sep; 225(3):637-56. PubMed ID: 4342522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal competition for action potential initiation sites in a circuit controlling simple learning.
    Cruz GE; Sahley CL; Muller KJ
    Neuroscience; 2007 Aug; 148(1):65-81. PubMed ID: 17644266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech.
    Burrell BD; Sahley CL; Muller KJ
    J Neurosci; 2001 Feb; 21(4):1401-12. PubMed ID: 11160412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning.
    Baccus SA; Burrell BD; Sahley CL; Muller KJ
    J Neurophysiol; 2000 Mar; 83(3):1693-700. PubMed ID: 10712489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    García PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of transmission at an inhibitory synapse in the central nervous system of the leech.
    Nicholls J; Wallace BG
    J Physiol; 1978 Aug; 281():157-70. PubMed ID: 212550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
    Olypher A; Cymbalyuk G; Calabrese RL
    J Neurophysiol; 2006 Dec; 96(6):2857-67. PubMed ID: 16943313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasting changes in a network of interneurons after synapse regeneration and delayed recovery of sensitization.
    Urazaev AK; Arganda S; Muller KJ; Sahley CL
    Neuroscience; 2007 Dec; 150(4):915-25. PubMed ID: 18031937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech.
    Moss BL; Fuller AD; Sahley CL; Burrell BD
    J Neurophysiol; 2005 Oct; 94(4):2575-89. PubMed ID: 15987763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS.
    Burrell BD; Sahley CL
    J Neurosci; 2004 Apr; 24(16):4011-9. PubMed ID: 15102916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals.
    Günay C; Doloc-Mihu A; Lamb DG; Calabrese RL
    eNeuro; 2019; 6(4):. PubMed ID: 31270128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple sites of action potential initiation increase neuronal firing rate.
    Baccus SA; Sahley CL; Muller KJ
    J Neurophysiol; 2001 Sep; 86(3):1226-36. PubMed ID: 11535672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The S cell: an interneuron essential for sensitization and full dishabituation of leech shortening.
    Sahley CL; Modney BK; Boulis NM; Muller KJ
    J Neurosci; 1994 Nov; 14(11 Pt 1):6715-21. PubMed ID: 7965072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphological and physiological properties of a regenerating synapse in the C.N.S. of the leech.
    Muller KJ; Carbonetto S
    J Comp Neurol; 1979 Jun; 185(3):485-516. PubMed ID: 438368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.