These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19142942)

  • 1. Phase transformation in titania nanocrystals by the oriented attachment mechanism: the role of the pH value.
    Ribeiro C; Barrado CM; de Camargo ER; Longo E; Leite ER
    Chemistry; 2009; 15(9):2217-22. PubMed ID: 19142942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the oriented attachment mechanism in the phase transformation of oxide nanocrystals.
    Ribeiro C; Vila C; Milton Elias de Matos J; Bettini J; Longo E; Leite ER
    Chemistry; 2007; 13(20):5798-803. PubMed ID: 17443834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: formation mechanism and characterization of surface properties.
    Wen P; Itoh H; Tang W; Feng Q
    Langmuir; 2007 Nov; 23(23):11782-90. PubMed ID: 17935363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress of nanocrystalline growth kinetics based on oriented attachment.
    Zhang J; Huang F; Lin Z
    Nanoscale; 2010 Jan; 2(1):18-34. PubMed ID: 20648361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals.
    Lee EJ; Ribeiro C; Longo E; Leite ER
    J Phys Chem B; 2005 Nov; 109(44):20842-6. PubMed ID: 16853702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism.
    Adachi M; Murata Y; Takao J; Jiu J; Sakamoto M; Wang F
    J Am Chem Soc; 2004 Nov; 126(45):14943-9. PubMed ID: 15535722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented attachment kinetics for ligand capped nanocrystals: coarsening of thiol-PbS nanoparticles.
    Zhang J; Wang Y; Zheng J; Huang F; Chen D; Lan Y; Ren G; Lin Z; Wang C
    J Phys Chem B; 2007 Feb; 111(6):1449-54. PubMed ID: 17286356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO(4) nanocrystals.
    Fan W; Song X; Bu Y; Sun S; Zhao X
    J Phys Chem B; 2006 Nov; 110(46):23247-54. PubMed ID: 17107173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers.
    Shi H; Wang X; Zhao N; Qi L; Ma J
    J Phys Chem B; 2006 Jan; 110(2):748-53. PubMed ID: 16471598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology-controlled synthesis of barium titanate nanostructures.
    Huang KC; Huang TC; Hsieh WF
    Inorg Chem; 2009 Oct; 48(19):9180-4. PubMed ID: 19722545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals.
    Zhuang Z; Zhang J; Huang F; Wang Y; Lin Z
    Phys Chem Chem Phys; 2009 Oct; 11(38):8516-21. PubMed ID: 19774282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide nanostructures: morphology derivation and evolution.
    Ye C; Fang X; Hao Y; Teng X; Zhang L
    J Phys Chem B; 2005 Oct; 109(42):19758-65. PubMed ID: 16853555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the colloidal state on the oriented attachment growth mechanism.
    Dalmaschio CJ; Ribeiro C; Leite ER
    Nanoscale; 2010 Nov; 2(11):2336-45. PubMed ID: 20835441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-controlled synthesis of highly crystalline titania nanocrystals.
    Dinh CT; Nguyen TD; Kleitz F; Do TO
    ACS Nano; 2009 Nov; 3(11):3737-43. PubMed ID: 19807108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth.
    Ng CH; Fan WY
    J Phys Chem B; 2006 Oct; 110(42):20801-7. PubMed ID: 17048890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals.
    Teo JJ; Chang Y; Zeng HC
    Langmuir; 2006 Aug; 22(17):7369-77. PubMed ID: 16893240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and photoelectronic properties of layered titanate nanostructures.
    Riss A; Elser MJ; Bernardi J; Diwald O
    J Am Chem Soc; 2009 May; 131(17):6198-206. PubMed ID: 19358537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The size dependence of the surface free energy of titania nanocrystals.
    Zhang H; Chen B; Banfield JF
    Phys Chem Chem Phys; 2009 Apr; 11(14):2553-8. PubMed ID: 19325990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Ti-O bonds in phase transitions of TiO2.
    Nosheen S; Galasso FS; Suib SL
    Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment: a case study of Zn2TiO4.
    Yang Y; Scholz R; Fan HJ; Hesse D; Gösele U; Zacharias M
    ACS Nano; 2009 Mar; 3(3):555-62. PubMed ID: 19256479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.