These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 19142944)

  • 1. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.
    Schmidt G; Gallon S; Esnouf S; Bourgoin JP; Chenevier P
    Chemistry; 2009; 15(9):2101-10. PubMed ID: 19142944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-reactivity relationship for single walled carbon nanotubes reacting with 4-hydroxybenzene diazonium salt.
    Nair N; Kim WJ; Usrey ML; Strano MS
    J Am Chem Soc; 2007 Apr; 129(13):3946-54. PubMed ID: 17352473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts.
    Doyle CD; Rocha JD; Weisman RB; Tour JM
    J Am Chem Soc; 2008 May; 130(21):6795-800. PubMed ID: 18454527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy.
    Cambré S; Wenseleers W; Culin J; Van Doorslaer S; Fonseca A; Nagy JB; Goovaerts E
    Chemphyschem; 2008 Sep; 9(13):1930-41. PubMed ID: 18712730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insight into carbon-nanotube electronic-structure selectivity.
    Sumpter BG; Jiang DE; Meunier V
    Small; 2008 Nov; 4(11):2035-42. PubMed ID: 18924129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the (n,m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra.
    Nair N; Usrey ML; Kim WJ; Braatz RD; Strano MS
    Anal Chem; 2006 Nov; 78(22):7689-96. PubMed ID: 17105160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the electronic structure of carbon nanotubes on the selectivity of electrochemical functionalization.
    Balasubramanian K; Burghard M; Kern K
    Phys Chem Chem Phys; 2008 Apr; 10(16):2256-62. PubMed ID: 18404234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure control of single-walled carbon nanotube functionalization.
    Strano MS; Dyke CA; Usrey ML; Barone PW; Allen MJ; Shan H; Kittrell C; Hauge RH; Tour JM; Smalley RE
    Science; 2003 Sep; 301(5639):1519-22. PubMed ID: 12970561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A supramolecular approach for the facile solubilization and separation of covalently functionalized single-walled carbon nanotubes.
    Bosch S; Zeininger L; Hauke F; Hirsch A
    Chemistry; 2014 Feb; 20(9):2537-41. PubMed ID: 24481923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin probe ESR studies of dynamics of single walled carbon nanotubes.
    Dhami AK; Bhat S; Sharma A; Bhat SV
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1178-82. PubMed ID: 17706456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts.
    Heald CG; Wildgoose GG; Jiang L; Jones TG; Compton RG
    Chemphyschem; 2004 Nov; 5(11):1794-9. PubMed ID: 15580944
    [No Abstract]   [Full Text] [Related]  

  • 16. Voltage gated carbon nanotube membranes.
    Majumder M; Zhan X; Andrews R; Hinds BJ
    Langmuir; 2007 Jul; 23(16):8624-31. PubMed ID: 17616216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes.
    Majumder M; Chopra N; Hinds BJ
    J Am Chem Soc; 2005 Jun; 127(25):9062-70. PubMed ID: 15969584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization.
    Campidelli S; Meneghetti M; Prato M
    Small; 2007 Oct; 3(10):1672-6. PubMed ID: 17806088
    [No Abstract]   [Full Text] [Related]  

  • 19. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.
    Cang-Rong JT; Pastorin G
    Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.