These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 19143511)
21. [Structure and Raman spectra of titanium oxides]. Xiao P; Zheng SB; You JL; Jiang GC; Chen H; Zeng H Guang Pu Xue Yu Guang Pu Fen Xi; 2007 May; 27(5):936-9. PubMed ID: 17655108 [TBL] [Abstract][Full Text] [Related]
22. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. Mao Y; Wong SS J Am Chem Soc; 2006 Jun; 128(25):8217-26. PubMed ID: 16787086 [TBL] [Abstract][Full Text] [Related]
23. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. Lee CK; Wang CC; Lyu MD; Juang LC; Liu SS; Hung SH J Colloid Interface Sci; 2007 Dec; 316(2):562-9. PubMed ID: 17765912 [TBL] [Abstract][Full Text] [Related]
24. The fabrication of TiO(2) nanorods from TiO(2) nanoparticles by organic protection assisted template method. Luo Z; Yang W; Peng A; Zeng Y; Yao J Nanotechnology; 2009 Aug; 20(34):345601. PubMed ID: 19652270 [TBL] [Abstract][Full Text] [Related]
25. Direct observation of TiO6 octahedron forming titanate nanotube by advanced transmission electron microscopy. Yoshida K; Miao L; Tanaka N; Tanemura S Nanotechnology; 2009 Oct; 20(40):405709. PubMed ID: 19752500 [TBL] [Abstract][Full Text] [Related]
26. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate. Zhang H; Liu P; Wang H; Yu H; Zhang S; Zhu H; Peng F; Zhao H Langmuir; 2010 Feb; 26(3):1574-8. PubMed ID: 20039654 [TBL] [Abstract][Full Text] [Related]
27. Formation, structure, and stability of titanate nanotubes and their proton conductivity. Thorne A; Kruth A; Tunstall D; Irvine JT; Zhou W J Phys Chem B; 2005 Mar; 109(12):5439-44. PubMed ID: 16851578 [TBL] [Abstract][Full Text] [Related]
28. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Shim HW; Lee DK; Cho IS; Hong KS; Kim DW Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576 [TBL] [Abstract][Full Text] [Related]
29. Facile fabrication of hierarchical hollow microspheres assembled by titanate nanotubes. Tang Y; Yang L; Chen J; Qiu Z Langmuir; 2010 Jun; 26(12):10111-4. PubMed ID: 20429512 [TBL] [Abstract][Full Text] [Related]
30. Ab initio modeling of TiO2 nanotubes. Szieberth D; Ferrari AM; Noel Y; Ferrabone M Nanoscale; 2010 Jan; 2(1):81-9. PubMed ID: 20648368 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets. Yu J; Li Q; Fan J; Cheng B Chem Commun (Camb); 2011 Aug; 47(32):9161-3. PubMed ID: 21761051 [TBL] [Abstract][Full Text] [Related]
32. Unique ordered TiO(2) superstructures with tunable morphology and crystalline phase for improved lithium storage properties. Hong Z; Xu Y; Liu Y; Wei M Chemistry; 2012 Aug; 18(34):10753-60. PubMed ID: 22806930 [TBL] [Abstract][Full Text] [Related]
33. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Kodama A; Bauer S; Komatsu A; Asoh H; Ono S; Schmuki P Acta Biomater; 2009 Jul; 5(6):2322-30. PubMed ID: 19332383 [TBL] [Abstract][Full Text] [Related]
34. A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. Liu P; Zhang H; Liu H; Wang Y; Yao X; Zhu G; Zhang S; Zhao H J Am Chem Soc; 2011 Nov; 133(47):19032-5. PubMed ID: 22035232 [TBL] [Abstract][Full Text] [Related]
35. An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. Yang D; Liu H; Zheng Z; Yuan Y; Zhao JC; Waclawik ER; Ke X; Zhu H J Am Chem Soc; 2009 Dec; 131(49):17885-93. PubMed ID: 19911792 [TBL] [Abstract][Full Text] [Related]
36. TiO2-based nanotubes modified with nickel: synthesis, properties, and improved photocatalytic activity. Qamar M; Kim SJ; Ganguli AK Nanotechnology; 2009 Nov; 20(45):455703. PubMed ID: 19834243 [TBL] [Abstract][Full Text] [Related]
37. Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. Wang XH; Li JG; Kamiyama H; Katada M; Ohashi N; Moriyoshi Y; Ishigaki T J Am Chem Soc; 2005 Aug; 127(31):10982-90. PubMed ID: 16076205 [TBL] [Abstract][Full Text] [Related]
38. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials. Morgado E; Jardim PM; Marinkovic BA; Rizzo FC; de Abreu MA; Zotin JL; Araújo AS Nanotechnology; 2007 Dec; 18(49):495710. PubMed ID: 20442491 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries. Wu HB; Lou XW; Hng HH Chemistry; 2012 Feb; 18(7):2094-9. PubMed ID: 22246679 [TBL] [Abstract][Full Text] [Related]
40. Stability and photoelectronic properties of layered titanate nanostructures. Riss A; Elser MJ; Bernardi J; Diwald O J Am Chem Soc; 2009 May; 131(17):6198-206. PubMed ID: 19358537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]