These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 19143545)

  • 1. Effect of surface polarity on the structure and dynamics of water in nanoscale confinement.
    Romero-Vargas Castrillón S; Giovambattista N; Aksay IA; Debenedetti PG
    J Phys Chem B; 2009 Feb; 113(5):1438-46. PubMed ID: 19143545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution from surface-influenced to bulk-like dynamics in nanoscopically confined water.
    Romero-Vargas Castrillón S; Giovambattista N; Aksay IA; Debenedetti PG
    J Phys Chem B; 2009 Jun; 113(23):7973-6. PubMed ID: 19449830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2005 May; 109(18):8663-72. PubMed ID: 16852026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE; Herwig KW
    J Chem Phys; 2004 Oct; 121(16):7855-68. PubMed ID: 15485248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modeling and simulation of water near model micelles: diffusion, rotational relaxation and structure at the hydration interface.
    Sterpone F; Marchetti G; Pierleoni C; Marchi M
    J Phys Chem B; 2006 Jun; 110(23):11504-10. PubMed ID: 16771426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration layer of a cationic micelle, C(10)TAB: structure, rigidity, slow reorientation, hydrogen bond lifetime, and solvation dynamics.
    Pal S; Bagchi B; Balasubramanian S
    J Phys Chem B; 2005 Jul; 109(26):12879-90. PubMed ID: 16852599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces.
    Tsukahara T; Mizutani W; Mawatari K; Kitamori T
    J Phys Chem B; 2009 Aug; 113(31):10808-16. PubMed ID: 19603763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of water confined in silica nanopores.
    Milischuk AA; Ladanyi BM
    J Chem Phys; 2011 Nov; 135(17):174709. PubMed ID: 22070319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydrophilic surface specificity on the structural properties of confined water.
    Malani A; Ayappa KG; Murad S
    J Phys Chem B; 2009 Oct; 113(42):13825-39. PubMed ID: 19624107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
    Kumar P; Han S
    J Chem Phys; 2012 Sep; 137(11):114510. PubMed ID: 22998274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of nanoconfined glycerol.
    Busselez R; Lefort R; Ji Q; Affouard F; Morineau D
    Phys Chem Chem Phys; 2009 Dec; 11(47):11127-33. PubMed ID: 20024381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.
    Laage D; Thompson WH
    J Chem Phys; 2012 Jan; 136(4):044513. PubMed ID: 22299897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of liquid methanol confined within functionalized silica nanopores.
    Elola MD; Rodriguez J; Laria D
    J Chem Phys; 2010 Oct; 133(15):154707. PubMed ID: 20969419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational fluctuations of water confined to layered oxide materials: nonmonotonous temperature dependence of relaxation times.
    Frunza L; Schönhals A; Frunza S; Parvulescu VI; Cojocaru B; Carriazo D; Martín C; Rives V
    J Phys Chem A; 2007 Jun; 111(24):5166-75. PubMed ID: 17536791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar mixtures under nanoconfinement.
    Rodriguez J; Elola MD; Laria D
    J Phys Chem B; 2009 Sep; 113(38):12744-9. PubMed ID: 19757844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational spectral diffusion in supercritical D2O from first principles: an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation.
    Mallik BS; Chandra A
    J Phys Chem A; 2008 Dec; 112(51):13518-27. PubMed ID: 19093822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range effects of confinement on water structure.
    Fan Y; Gao YQ
    J Phys Chem B; 2010 Apr; 114(12):4246-51. PubMed ID: 20210292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the counterion on water mobility in reverse micelles studied by molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE
    J Phys Chem B; 2005 Sep; 109(35):16891-900. PubMed ID: 16853150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.