These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19144260)

  • 1. Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity.
    Wilson JR; Gameiro M; Mischaikow K; Kalies W; Voorhees PW; Barnett SA
    Microsc Microanal; 2009 Feb; 15(1):71-7. PubMed ID: 19144260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional reconstruction of a solid-oxide fuel-cell anode.
    Wilson JR; Kobsiriphat W; Mendoza R; Chen HY; Hiller JM; Miller DJ; Thornton K; Voorhees PW; Adler SB; Barnett SA
    Nat Mater; 2006 Jul; 5(7):541-4. PubMed ID: 16767095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.
    Pecho OM; Mai A; Münch B; Hocker T; Flatt RJ; Holzer L
    Materials (Basel); 2015 Oct; 8(10):7129-7144. PubMed ID: 28793624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and characterization of novel oxide anodes for solid oxide fuel cells.
    Tao S; Irvine JT
    Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell.
    Merinov BV; Mueller JE; van Duin AC; An Q; Goddard WA
    J Phys Chem Lett; 2014 Nov; 5(22):4039-43. PubMed ID: 26276491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in SOFC anode performance by finely-structured Ni/YSZ cermet prepared via heterocoagulation.
    Sunagawa Y; Yamamoto K; Muramatsu A
    J Phys Chem B; 2006 Mar; 110(12):6224-8. PubMed ID: 16553437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.
    Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method.
    Duan NQ; Yan D; Chi B; Pu J; Jian L
    Sci Rep; 2015 Feb; 5():8174. PubMed ID: 25640168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells.
    Fu Z; Wang M; Zuo P; Yang Z; Wu R
    Phys Chem Chem Phys; 2014 May; 16(18):8536-40. PubMed ID: 24671516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes.
    Kennouche D; Hong J; Noh HS; Son JW; Barnett SA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15249-55. PubMed ID: 24938312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Zhou W; Irvine JT
    Nature; 2006 Feb; 439(7076):568-71. PubMed ID: 16452975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of oxygen reduction sites at Pt electrodes on YSZ by means of 18O tracer incorporation: the width of the electrochemically active zone.
    Opitz AK; Schintlmeister A; Hutter H; Fleig J
    Phys Chem Chem Phys; 2010 Oct; 12(39):12734-45. PubMed ID: 20737090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ.
    Hanifi AR; Laguna-Bercero MA; Sandhu NK; Etsell TH; Sarkar P
    Sci Rep; 2016 Jun; 6():27359. PubMed ID: 27270152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode.
    Li Y; Luo ZY; Yu CJ; Luo D; Xu ZA; Cen KF
    J Zhejiang Univ Sci B; 2005 Nov; 6(11):1124-9. PubMed ID: 16252348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of H(2) oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions.
    Deleebeeck L; Shishkin M; Addo P; Paulson S; Molero H; Ziegler T; Birss V
    Phys Chem Chem Phys; 2014 May; 16(20):9383-93. PubMed ID: 24718381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.