These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19144260)

  • 21. Double layer capacitance of anode/solid-electrolyte interfaces.
    Ge X; Fu C; Chan SH
    Phys Chem Chem Phys; 2011 Sep; 13(33):15134-42. PubMed ID: 21785778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular Nickel-Yttria/Zirconia (Ni-YSZ) Cermet Foams: Manufacturing, Microstructure and Properties.
    Betke U; Schelm K; Rodak A; Scheffler M
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32466407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel.
    Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z
    ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La
    Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Navigating the future of solid oxide fuel cell: Comprehensive insights into fuel electrode related degradation mechanisms and mitigation strategies.
    Gohar O; Khan MZ; Saleem M; Chun O; Babar ZUD; Rehman MMU; Hussain A; Zheng K; Koh JH; Ghaffar A; Hussain I; Filonova E; Medvedev D; Motola M; Hanif MB
    Adv Colloid Interface Sci; 2024 Sep; 331():103241. PubMed ID: 38909547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.
    Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.
    Liu SS; Takayama A; Matsumura S; Koyama M
    J Microsc; 2016 Mar; 261(3):326-32. PubMed ID: 26599978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanisms for the high resistance to sulfur poisoning of the Ni/yttria-stabilized zirconia system treated with Sn vapor.
    Zhang Y; Fu Z; Dong S; Yang Z
    Phys Chem Chem Phys; 2014 Jan; 16(3):1033-40. PubMed ID: 24285258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic conductivity and activation energy for oxygen ion transport in superlattices--the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3.
    Korte C; Peters A; Janek J; Hesse D; Zakharov N
    Phys Chem Chem Phys; 2008 Aug; 10(31):4623-35. PubMed ID: 18665312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ|Sc2O3 multilayers.
    Schichtel N; Korte C; Hesse D; Zakharov N; Butz B; Gerthsen D; Janek J
    Phys Chem Chem Phys; 2010 Nov; 12(43):14596-608. PubMed ID: 20938560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of anode microstructure on solid oxide fuel cells.
    Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M
    Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spark plasma sintered Ni-YSZ/YSZ bi-layers for solid oxide fuel cell.
    Bezdorozhev O; Borodianska H; Sakka Y; Vasylkiv O
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4150-7. PubMed ID: 23862464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometry-controlled triple phase boundary study for low-temperature solid oxide fuel cells reaction kinetics.
    Kim YB
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7895-901. PubMed ID: 24266160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying Microstructure Features for High-Performance Solid Oxide Cells.
    Ruse CM; Hume LA; Wang Y; Pesacreta TC; Zhou XD
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically Scavenging the Silica Impurities at the Ni-YSZ Triple Phase Boundary of Solid Oxide Cells.
    Tao Y; Shao J; Cheng S
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17023-7. PubMed ID: 27352122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells.
    Kim JY; Kim JH; Choi HW; Kim KH; Park SJ
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
    Pomfret MB; Owrutsky JC; Walker RA
    J Phys Chem B; 2006 Sep; 110(35):17305-8. PubMed ID: 16942063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.